ADDRESS

here:

APPLICATIONS 155

MNEMONIC COMMENT

mov tmod, #01h ;set TO to mode 1

mov ie, #82h ;enable TO interrupt

setb tcon.4 ;start timer

clr psw.3 ;return to register bank O

sjmp here ;loop and simulate rest of program

;convert uses the PC to point to the base of the 16-byte table

convert:

—{[>>— COMMENT

inc a ;compensate for RET byte

mov a,@pc+a ;get byte

ret ;return with segment pattern in A
.db cOh ;0

.db f9h
.db a4h
.db bOh
.db 9%h
.db 92h
.db 82h
.db f8h
.db fOh
.db 98h
.db 88h
.db 83h
.db ¢6h
.db blh
.db 86h
.db 8eh

HHOAT > OO0 30O R NN

Using bank 1 as a dedicated bank for the interrupt routine cuts down on the need for pushes
and pops. Bank 1 may be selected quickly, giving access to the eight registers while saving
the bank O registers. Note that the stack, at reset, points to RO of bank 1, so that it must be
relocated.

The intensity of the display may also be varied by blanking the displays completely for some
interval using the program.

Intelligent LCD Display

In this section, we examine an intelligent LCD display of two lines, 20 characters per line,
that is interfaced to the 8051. The protocol (handshaking) for the display is shown in
Figure 8.8, and the interface to the 8051 in Figure 8.9.

The display contains two internal byte-wide registers, one for commands (RS = 0) and
the second for characters to be displayed (RS = 1). It also contains a user-programmed
RAM area (the character RAM) that can be programmed to generate any desired character
that can be formed using a dot matrix. To distinguish between these two data areas, the
hex command byte 80 will be used to signify that the display RAM address 00h is chosen.

156

FIGURE 8.8

BIT RS R/W D7
0o 0 o
o o0 o
c 0 o
0 o0 o0
0o o0 o0
o o0 o
0o 0 o
0 0
o 1 BF
0
T

CHAPTER EIGHT

Intelligent LCD Display

— e &)
N f——
W f——a

7 10 11 12 13 14

TT T

DO D1 D2 D3 D4 D5 D6 D7

Inteltigent LCD Display

D6 D5 D4 D3 D2 D1 DO
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 170 S

S/IC RIL O 0

1 Character address
Display data address
Current address
Character byte
Character byte

4 5 6
RS R/W EN

Function

Clear LCD and memory, home cursor
Clear and home cursor only

Screen action as display character written
S = 1/0: Shift screen/cursor

/0 = 1/0: Cursor R/L, screen L/R

D = 1/0: Screen on/off

C = 1/0: Cursor on/off

B = 1/0: Cursor Blink/Noblink

S/C = 1/0: Screen/Cursor

R/L = 1/0: Shift one space R/L

DL = 1/0: 8/4 Bits per character

N = 1/0; 2/1 Rows of characters

F = 1/0; 5X10/5X7 Dots/Character
Write to character RAM Address after thi
Write to display RAM Address after thi
BF = 1/0: Busy/Notbusy

Write byte to last RAM chosen

Read byte from last RAM chosen

ter select and read/write levels.

Port 1 is used to furnish the command or data byte, and ports 3.2 to 3.4 furnish regis

The display takes varying amounts of time to accomplish the functions listed in Viy

ure 8.8. LCD bit 7 is monitored for a logic high (busy) to ensure the display is not over
written. A slightly more complicated LCD display (4 lines X 40 characters) is currenthy
being used in medical diagnostic systems to run a very similar program.

Ledisp
The program “lcdisp™ sends the message “hello™ to an intelligent LCD display shown in
Figure 8.8. Port 1 supplies the data byte. Port 3.2 selects the command (0) or data « 11
registers. Port 3.3 enables a read (0) or write (1) level, and port 3.4 generates an active
low-enable strobe.

FIGURE 8.9

ADDRESS

lcdisp:

APPLICATIONS 157

Intelligent LCD Circuit for “Ledisp” Program
. +5V -5V
T 11
1 2 3
Two Line x 20 Character EN
intelligent LCD Display 6 14pP34
Enable L
14 13 12 11 w0 9 8 7 5 4 navle tow 8031
D7| D6 |D5| D4 | D3 {D2 | D1 DO | RW |RS I
| 12P3.2
13P3.3
1P1.0
2P1.1
3P1.2
4P1.3
5P1.4
6P1.5
7P1.6
8P1L.7
MNEMONIC COMMENT
.org 000Ch
clr p3.2 ;select the command register
clr p3.3 ;select write level
mov a,#3fh :command 8 bits/char., 2 rows, 5 x 10

acall strobe
mov a,#0eh
acall strobe
mov a,#06h
acall strobe
mov a,#0lh
acall strobe
setb p3.2
mov a,#'h'
acall strobe
mov a,#'e’
acall strobe
mov a,#'l’
acall strobe
acall strobe
mov a,#'o’'
acall strobe

:strobe command to display

:command screen and cursor on, no blink

.command cursor right as data displayed

:clear all and home cursor

;select display data RAM register
;say ‘‘hello"

Continued

158 CHAPTER EIGHT

ADDRESS MNEMONIC COMMENT
Continued

here: sjmp here ;message sent

;the subroutine ''strobe’ is used to check for a display busy
;condition, and pulse P3.3 high-low-high to enable the display
;write or read

strobe: mov pl,#0ffh ;configure port 1 as an input
setb p3.3 ;set read level

wait: setb p3.4 ;generate read strobe
clr p3.4 ;enable the display
jb pl.7,wait ;check for busy when BF = 1
setb p3.4 ;end of read strobe
clr p3.3 ;write character to display
setb p3.2 ;choose data RAM
mov pl,a ;character to port 1
clr p3.4 ;generate write strobe
setb p3.4
clr p3.2 ;return with display as before call
ret
.end

—{>>— COMMENT

If long character strings are to be displayed, then a subroutine could be written that receives
the beginning address of the string. The subroutine then displays the characters untit a unique

"end-of-string” character is found.

Pulse Measurement

Sensors used for industrial and commercial control applications frequently produce pulses
that contain information about the quantity sensed. Varying the sensor output frequency,
using a constant duty cycle but variable frequency pulses to indicate changes in the mea-
sured variable, is most common. Varying the duration of the pulse width, resulting in
constant frequency but variable duty cycle, is also used. In this section, we examine pro-

grams that deal with both techniques.

Measuring Frequency

Timers TO and T1 can be used to measure external frequencies by configuring one timer as
a counter and using the second timer to generate a timing interval over which the first can

count. The frequency of the counted pulse train is then

Unknown frequency = Counter/timer

For example, if the counter counts 200 pulses over an interval of .1 second generated by

the timer, the frequency is
UF = 200/.1 = 2000 Hz

APPLICATIONS 159

Certain fundamental limitations govern the range of frequencies that can be mea-
sured. An input pulse must make a 1-to-0 transition lasting two machine cycles, or /24,
to be counted. This restriction on pulse deviation yields a frequency of 667 kilohertz using
our 16 megahertz crystal (assuming a square wave input).

The lowest frequency that can be counted is limited by the duration of the time inter-
val generated, which can be exceedingly long using all the RAM to count timer rollovers
(49.15 milliseconds X 2/32768). There is no practical limitation on the lowest frequency
that can be counted.

Happily, most frequency variable sensors generate signals that fall inside of 0 to
667 kilohertz. Usually the signals have a range of 1,000 to 10,000 hertz.

Our example will use a sensor that measures dc voltage from 0 to 5 volts. At 0 V the
sensor output is 1,000 hertz, and at full scale, or 5 volts, the sensor output is 6,000 hertz.
The correspondence is 1 volt per 1,000 hertz, and we wish to be able to measure the volt-
age to the nearest .01 V, or 10 hertz of resolution (assuming the sensor is this accurate).
A timing interval of | second generates a frequency count accurate to the nearest 1 hertz,
so an interval of .1 s yields a count accurate to the nearest 10 hertz.

Another way to arrive at the desired timing interval, T, is to note that the desired
accuracy is

01V 1 1
sv - =5p =%

and that the range of the counter is from T X fmin to T X fmax, or a range of T X
(fmax — fmin) from zero to full scale. The resolution of each counter bit is then

LSB = T X (fmax — fmin)

2"
where n is the desired number of bits to be tesolved. For our example, T = 512/5000 =
.1024 seconds; .1 second yields a slightly better accuracy.

From earlier tries at generating decimal time delays in Chapter 7, it has been amply
demonstrated that these cannot be done perfectly using a 16 megahertz crystal (.75 micro-
second count interval). We will be close enough to meet our requirements.

T1 is used in the auto-reload mode 2 to generate overflow interrupts every 192 micro-
seconds (256 X .75 microseconds). These overflows are counted using R4 and R5 until
.100032 seconds have elapsed (521d overflows). For this example, TO is used as a counter
to count the external frequency that is fed to the port 3.4 (TO) pin during the T1 interval.
Using the interval chosen, the range of counts in TO becomes

OV = 1000 Hz X .100032 s = 100d counts
5V = 6000 Hz X .100032 s = 600d counts
.01V = 10Hz x .100032 s = | count

which meets the desired accuracy specification.

Freq

The program “freq” uses TO to count an external pulse train that is known to vary in
frequency from 1000 to 6000 hertz. T1 generates an exact time delay of 192 microseconds
that is counted using registers R4 and RS of bank 1 until T1 has overflowed 521d times, or
a total delay of .100032 seconds.

160 CHAPTER EIGHT

ADDRESS

freq:

MNEMONIC

.equ frqflg.0fh
.org 0000h

mov sp, #0fh
sjmp over

COMMENT

;use addressable bit for a flag

;set stack above register bank one
;jump over the Tl interrupt location

:T1 will overflow and vector here; R4 and R5 will be used as a
;combined 16-bit counter to count the 521d overflows; the extra
;microseconds needed to detect end of count and stop TO will

;introduce a slight error

timup:

go:

.org 00lbh
setb psw.3
dinz r4,timup

dec rb

cjne r5,#0fdh, go
cjne r4,#0f7h,go
clr tcon.4

setb frqflg

clr tcon.6
clr psw.3
reti

;place program at Tl interrupt vector
;switch to register bank 1

;count R4 down and test for 5214
;counts

:count down from 0000 to FDF7h (209h)
;209h = 521d

;stop TO and set frgflg

;main program can now process

; frequency

;stop Tl

;return to register bank zero

;total extra time to stop TO =

;8.25 us

;the main program sets up TO to be a counter and starts Tl; the
iflag frqflg is then watched until it is set by the interrupt

;program;

;1s desired;
;the main program,

the main program must do this every time a frequency read

if continuous frequency determinations are desired by

then the interrupt program could call a subroutine

:frequency handling program inserted before '‘go'" in place of the
;instruction that stops TI1.

over:

simulate:

getfrq:

setb psw.3
mov r4, #00h
mov rS5, #00h
clr psw.3

mov tmod, #25h
mov tll,#00h
mov thl, #00h
mov tcon, #50h
mov ie, #88h
jbc fraqflg,getfrq
sjmp simulate
nop

sjmp simulate
.end

;select register bank one
;reset R4 and RS

;restore to register bank zero

;Tl mode 2 timer, TO mode 1 counter
;count up from 00 and reset

;reload with 00

;start TO and T1

;enable T1 to interrupt

;simulate main program getting data

;place frequency subroutine here

APPLICATIONS 161

—{>>— COMMENT

The ionger the time taken to count, the more accurate the frequency will be (but remember, it
makes little sense to make the readout more accurate than the basic sensor). TO will overflow
at 65,535 or at the end of an interval of 10.92 s at fmax, which ¢an be generated in T1 and R4,
RS5. In this case, the accuracy would be to the nearest .09 hertz (.0001 volt).

If you wish to generate a delay closer to .1 s than used in the example, make T1 cycle in a
shorter period of time and count these shorter periods in R4, R5. Compensate for the 8.5 micro-
seconds it takes for the interrupt routine to determine that time is up.

Preloading TO with a number that causes TO to overflow to 0000 when fmin is present during T
will enable TO to read the voltage directly. For our example, presetting TO to FFACh will have
TO = 01F4h (500d) at fmax = 60,000 hertz for T = .1s.

Pulse Width Measurement

Theoretically, if the input pulse is known to be a perfect square wave, the pulse frequency
can be measured by finding the time the wave is high (Th). The frequency is then
1

UF =<2

If Th is 200 microseconds, for example, then UF is 2500 hertz. The accuracy of the mea-
surement will fall as the input wave departs from a 50 percent duty cycle.

Timer X may be configured so that the internal clock is counted only when the corre-
sponding INTX pin is high by setting the GATE X bit in TMOD. The accuracy of the
measurement is within approximately one-half of the timer clock period, or .375 micro-
second for a 16 megahertz crystal. This accuracy can only be attained if the measurement
is started when the input wave is low and stopped when the input next goes low. Pulse
widths greater than the capacity of the counter, which is 49.152 milliseconds for a
16 megahertz crystal, can be measured by counting the overflows of the timer flag and
adding the final contents in the counter.

For the example in this section, the sensor used to measure the 0 volt to 5 volts dc
voltage has a fixed frequency of 1000 hertz or a period of 1 ms. For a 0 volt input, the
sensor is high for 400 microseconds and low for 600 microseconds; when the sensor input
is 5 volts, the output is high for 900 microseconds and low for 100 microseconds. Each
volt represents 100 microseconds of time; the accuracy of the measurement is +.00325
volts, which is within the specification of .01 volt.

To make the measurement, TO will be configured to count the internal clock when
INTO is high. The measurement is not started until INTOgoes from high to low, leaving a
minimum of 100 microseconds to start TQ. The measurement is made while INTO is high
and stopped when INTO goes low again. The whole process can be interrupt driven by
using the interrupt flag associated with INTO. The IEO flag can be set whenever INTO goes
from high to low to notify the program to start the pulse width timing and then to stop. A
variation of this program is currently in use to measure fabric width by measuring the
reflection time of a scanning laser.

Width

The program *“Width” measures the width of pulses that are fed to the INTO pin, port 3.2
and that are known to vary from 400 to 900 microseconds. The program starts when the
interrupt flag IEQ is set and stops the next time the flag is set, indicating one complete
cycle of the input wave.

162 CHAPTER EIGHT

ADDRESS MNEMONIC COMMENT
.equ wflg,00h ;flag set to notify main program
.org 0000h

width: sjump over ;jump over INTO flag vector location

;the INTO edge triggered flag will vector here

.org 0003h
jbc tcon.4,stop ;if TO is running, stop TO
setb tcon.4 ;if TO is not running, enable TO
clr wflg ;reset wflg until next measurement
reti ;return with TO enabled

stop: setb wflg ;set flag for main program
reti ;return with TO stopped

:the main program resumes here; the program monitors the flag that
;indicates that a width measurement has just been made

over: ;mov tmod, #0%h ;set TO to count when INTO high
mov tcon,#01lh ;enable edge trigger for INTO
mov t10, #00h ;reset TO
mov thQ, #00h
mov ie, #81h ;enable external interrupt
simulate: jbc wflg,getw ;look for wflg and get width
sjmp simulate
getw: nop ;real program would read TO for width
mov t10, #00h ;reset TO
mov thO, #00h
sjmp simulate ;simulate main program
.end

—{[>>— COMMENT

If there is a considerable amount of electrical noise present on the TNTO pin, an average value
of the pulse width could be found by measuring the widths of a number of consecutive pulses.
A counter could be incremented at the end of each cycle and the sum of the widths divided by
the counter contents. The noise should average to zero.

Frequency can be measured by timing the interval of a number (M) of high-to-low INTX inter-
rupts. Synchronize the timing by starting the timer at the first transition, and stop the timer at
the Mth + 1 transition. The frequency is then

ur = M
T

where T is the count in the timer.

D/A and A/D Conversions

Conversion between the analog and digital worlds requires the use of integrated circuits
that have been designed to interface with computers. Highly intelligent converters are
commercially available that all have the following essential characteristics:

P3.3 13
P3.2 12

8031

P1.0

APPLICATIONS 163

Parallel data bus: tri-state, 8-bit
Control bus: enable (chip select), read/write, ready/busy

The choice the designer must make is whether to use the converter as a RAM memory
location connected to the memory busses or as an I/O device connected to the ports. Once
that choice is made, the set of instructions available to the programmer becomes limited.
The memory location assignment is the most restrictive, having only MOVX available.
The design could use the additional 32K RAM address space with the addition of circuitry
for A15. By enabling the RAM when A1S is Jow, and the converter when A15 is high, the
designer could use the upper 32K RAM address space for the converter, as was done to
expand port capacity by memory mapping in Chapter 7. All of the examples examined
here are connected to the ports.

D/A Conversions

A generic R-2R type D/A converter, based on several commercial models, is connected to
ports 1 and 3 as shown in Figure 8.10. Port 1 furnishes the digital byte to be converted to
an analog voltage; port 3 controls the conversion process. The converter has these features:

Vout = —Vref X (byte in/100H), Vref = =10V
Conversion time: 5 us
Control sequence: CS then WR

For this example, a 1000 hertz sine wave that will be generated can have a program-
mable frequency. Vref is chosen to be —10 volts, and the wave will swing from +9.96
volts to 0 volt around a midpoint of 4.48 volts. The program uses a lookup table to gener-
ate the amplitude of each point of the sine wave; the time interval at which the converter is
fed bytes from the table determines the wave frequency.

The conversion time limits the highest frequency that can be generated using S sample
point. In this example, the shortest period that can be used is

200,000
Tmin = S X 5 us = 5S us, fmax=—g—
FIGURE 8.10 D/A Converter Circuit for “Davcon” Program
Reference
Voltage
- I
P 1] bel
12 8 RN {Out
D To A Converter > _]
12 ? v Out
7 6 5 4 16 15 14 13 !
T Operational
00 Im pz J03| D4 | 05|06 | D7 Amplifier

P1.1
P1.2
P1.3
P14
P1.5
P1.6
P17

[- R T N e

164 CHARTER Bl

The design tension is high frequency versus high resolution. For a 1000 hertz wave,
S could be 200d samples. In reality, we cannot use this many samples; the program cannot
fetch the data, latch it to port 1, and strobe port 3.3 in 5 microseconds. An inspection of
the program will show that the time needed for a single wave point is 6 microseconds, and
setting up for the next wave takes another 2.25 microseconds. S becomes 166d samples
using the 6 microseconds interval, and the addition of 2.25 microseconds at the end of
every wave yields a true frequency of 1001.75 hertz.

Davcon

The D/A converter program *‘Davcon™ generates a 1000 hertz sine wave using an 8-bit
converter. 166d samples are stored in a lookup table and fed to the converter at a rate of
one sample every 6 microseconds. The lookup table is pointed to in external ROM by the
DPTR, and R1 is used to count the samples. Numbers in parentheses indicate the number

of cycles.
ADDRESS MNEMONIC COMMENT
.org 0000h
davcon: clr p3.2 ;enable chip select to converter
mov dptr, #table ;get base address to DPTR
repeat: mov rl, #0a6h ;initialize R1 to 166d (1)
next: mov a,rl ;offset into table (1)
movc a,(@a+dptr ;get sample (2)
mov pl,a ;sample to port 1 (1)
clr p3.3 ;write strobe low (1)
setb p3.3 ;write strobe high (1)
djnz rl, next ;loop for 166D samples (2)
sjmp repeat ;reload R1 and generate next wave (2)

;the lookup table begins here; a cosine wave is chosen to make the
;table readable; the first 83 samples cover the wave from maximum to
;1 less than 0; the next 83 cover the wave from O to maximum. 83
;samples per half-cycle means a sample every 2.17 degrees

table: .db 00h ;no entry at A = 00h
.db ffh ;FFhcos 0 = FFh. sl
.db feh ;7Fh + 7Fhcos 2.17 = FEh. s2
.db feh ;7Fh + 7Fhcos 4.34 = FEh. s3
.db fdh ;sample 4
.db fdh ;sample B
;and so on until we near 90 degrees:
.db 81h ;7Fh + TFhcos 88.9 = 8lh. s42
.db 7ch ;7Fh + 7Fhcos 91.1 = 7Ch. s43
;near 180 degrees we have:
.db 01lh ;7Fh + 7Fh cos 173.5 = 0lh. s81
.db 00h ;7Fh + 7Fh cos 175.7 = 00h. s82
.db 0OOh ;7Fh + 7Fh cos 177.8 = 00h. s83
.db 00h ;7Fh + 7Fh cos 180 = 00h. s84.
.db 0Ch ;7Fh + 7Fh cos 182.2 = OOh. s85
.db 00h ;7Fh + 7Fh cos 184.33 = 00Oh. s86

Continued

ADDRESS

APPLICATIONS 165

MNEMONIC COMMENT

.db 0lh ;7Fh + 7Fh cos 186.5 = 0lh. s87
;finally, close to 360 degrees the table contains:

.db fbh ;s 161

.db fch ;s 162

.db fdh ;s 163

.db fdh ;s 164

.db feh ;s 165

.db feh ;s 166

end

—{>>— COMMENT

FIGURE 8.11

The program retrieves the data from the highest to the lowest address.

A/D Conversion

The easiest A/D converters to use are the “flash™ types, which make conversions based
upon an array of internal comparators. The conversion is very fast, typically in less than
1 microsecond. Thus, the converter can be told to start, and the digital equivalent of the
input analog value will be read one or two instructions later. Modern successive approxi-
mation register (SAR) converters do not lag far behind, however, with conversion times in
the 2—4 microsecond range for eight bits.

At this writing, flash converters are more expensive (by a factor of two) than the tradi-
tional SAR types, but this cost differential should disappear within four years. Typical
features of an eight-bit flash converter are

Data: Vin = Vref(—), data = 00h; Vin = Vref(+), data = FFh
Conversion time: 1 us
Control sequence: CS then WR then RD

An example circuit, using a generic flash converter, is shown in Figure 8.11. Port 1 is
used to read the byte value of the input analog voltage, and port 3 controls the conversion.

A/D Converter Circuit for “Adconv” Program
+ VREF -
P34 14
P3.3 13
P3.2 12 =]v;ln_o
13 6 8 12 11
8031 Vinput @—————f 1 Flash A To D Converter
2 3 4 5 14 15 16 17
P10 1 Joolm p2 | 03] oa]os Jos o7
PLLL 2
P12 3
P13 4
P14 5
P15 6
P16 7
P17 8

166 CHAPTER EIGHT

A conversion is started by pulsing the write line low, and the data is read by bringing the
read line low.

Our example involves the digitizing of an input waveform every 100d microseconds
until 1000d samples have been stored in external RAM.

Adconv

The program *“Adconv™ will digitize an input voltage by sampling the input every 100 us
and storing the digitized values in external RAM locations 4000h to 43E7h (1000d
samples). Numbers in parentheses are cycles. The actual delay between samples is 99.75
microseconds.

ADDRESS MNEMONIC COMMENT
.equ begin,4000h ;start storage at 4000h
.equ delay,74h ;delay in DJNZ loop for 87 usec
.equ endl,43h ;high byte of ending address
.equ end?2,e8h ;low byte of ending address
.org 0000h
adconv: mov dptr, #begin ;point to starting address in RAM
clr p3.2 ;generate CS to ADC
next: clr p3.3 ;generate WR pulse (1)
setb p3.3 (1)
clr p3.4 ;generate RD pulse (1)
mov a,pl ;get data (1)
setb p3.4 ;end of RD pulse (1)
movx @dptr,a ;store in external RAM (2}
inc dptr ;point to next and see if done (2)
mov a,dph 1)
cjne a,#endl,wait ;(2)
mov a,dpl (1)
cjne a,#end2,wait 1 {2)
sjmp done ;finigshed if both tests pass
wait: mov rl, #delay ;delay for 87d us
here: djnz rl,here (2) X .75 us X 116d = 87 us
sjmp next ;{2) 17d cycles {12.75 us)
done: sjmp done ;simulate rest of program

.end

—{[>— COMMENT

Using this program, we could fill up the RAM in 3.2 s, which Hllustrates the volumes of data that
can be gathered quickly by such a circuit. Realistic applications would feature some data reduc-
tion at the microcontroller before the reduced (massaged) data were relayed to a host computer.

Multiple Interrupts

The 8051 is equipped with two external interrupt input pins: INTO and TNTI (P3.2 and
P3.3). These are sufficient for small systems, but the need may arise for more than two
interrupt points. There are many schemes available to multiply the number of interrupt
points; they all depend upon the following strategies:

