
Overview

1 HW/SF Interface

2 HW/SW Design Flow for HW/SW Interfaces

3 HW/SW Interface Tools and Design Flows

4 SPIRIT/IP-XACT

1 / 51



Overwiev

1 HW/SF Interface

2 HW/SW Design Flow for HW/SW Interfaces

3 HW/SW Interface Tools and Design Flows

4 SPIRIT/IP-XACT

2 / 51



HW/SF Interface

Software accesses hardware by converting software instructions into
hardware transactions

3 / 51



Hardware Configuration and Control Using Software

Software can take following actions:
Resetting the hardware to a known state
Configuration of the hardware to perform a specific function
Getting status of the hardware
Reading/writing data to/from the hardware.
Sample power control hardware element:

0x0: Turn Power on
0x1: Turn Power off
0x2: Set Power to standby
0x3: Set Power to idle

Those generic storage mechanisms that can be accessed by the
processor, via a memory-mapped transaction, can be generically
described as Software Accessible Hardware Elements (SAHEs).
This may be implemented in hardware with constructs such as
memories, registers, or bitfields.

4 / 51



Software Perspective I

From the processor point of view the system can be viewed as an
accessible address space.
This address space is generally an ordered layout or map of the
hardware.

Usually the best practice in embedded software design is to ensure
optimal processor performance by reducing the number of
transactions between hardware and software.

The processor typically works with a certain data bus size, - 32
bit/64 bit.

5 / 51



Software Perspective II

The least addressable unit (LAU) - the minimum data access. The
LAU imposes a constraint on the HW/SW interface.

How do we write 2 bits on 8-bit LAU?

The first option is to assign this SAHE a dedicated address space,
meaning that the other 30 bits will not be used, or probably made
“reserved.”

Pro: ease of access

Con: An increase in the amount of address decoding is required.

Con: Increase in the number of transactions
The second option is to “pack” as many SAHEs as possible into a
shared address.

What happens when just one of the SAHEs needs to be written?

1. Either the software retains a copy of the hardware SAHEs

6 / 51



Software Perspective III

2. The software must perform a read–modify–write type of
transaction.

This type of transaction requires some latency between the initial read
and the final updating write; this introduces an opportunity for
non-deterministic errors.

In the case where the SAHE is bigger than the maximum addressable
unit, then accessing this HW element may involve several accesses to
write or read the data.

7 / 51



Interrupts

Another important part of the HW/SW interface is the ability of the
hardware to notify the software when something has occurred. This is
typically done using a hardware interrupt.
From the software perspective, interrupts are asynchronous breaks in
program flow that occur as a result of events outside the running
program
Software typically handles interrupts through an interrupt service
routine (ISR) which can become extremely cumbersome for a large
system.
The ISR has the possibility of disabling interrupts in the hardware at
many different levels to help manage priorities.
Interrupt latency - the response time between an interrupt being
asserted in the hardware and the corresponding ISR being executed.

8 / 51



Software API

Software developers must understand and use SAHE to bridge the
gap between the hardware and software domains. This is achieved
using a software API (application programmers interface).
The lowest level of API will typically contain functions for accessing
the SAHEs in an efficient manner.
Higher level functions can be created from these low-level functions
to produce a higher level API.
If we consider that a specific hardware IP can be sourced from
different IP providers it may be possible to create a level of
abstraction that would be relatively hardware-independent.

9 / 51



Hardware Perspective I

When software accesses the hardware it does so by means of a
processor transaction; a read or write access to a specific address
location.

This transaction is implemented by a signaling protocol that involves
the toggling of wires (representing address, data, and control
elements) according to a well-defined specification.

10 / 51



Hardware Perspective II

11 / 51



Transaction Bus Protocol I

In the hardware domain, this bus transaction is implemented by a
signaling protocol involving the toggling of wires.

The protocol is a specification of how the transaction is realized in
hardware and involves addressing, data, handshaking and control,
clocking, and timing; in essence the logical rules that govern the
communication between the processor and a peripheral.

12 / 51



Transaction Bus Protocol II

Examples of protocols include AHB, AXI, PCI, and OCP.

A bus master can be defined as a hardware block that is a capable of
initiating a data transfer across a system

A bus slave is a logical device capable only of responding to a
transfer request from a bus master device

Control options for protocols:
Ability to perform burst transactions
Interleaved or out-of-order transactions
The clocking for the protocol
Bus arbitration control if there are multiple masters
Byte control for accessing specific bytes within the read or write data
Control needed for master-slave handshaking such as extending
transactions by inserting wait states
Indicating when a write burst has been completed
Error control

13 / 51



Transaction Bus Protocol III

In the hardware system there may be a mix of protocols used
between the bus master and a specific slave leading to increased
complexity through protocol translation.

14 / 51



Protocol Translation I

It is likely in a SoC with IP blocks coming from a range of different
sources that a variety of different protocols may be used.

15 / 51



Protocol Translation II

As a hardware transaction progresses through the system, it may
require several transformations to other protocols. In addition other
transformations may be required, such as:

It may need to be re-synchronized if the transaction crosses clock
domains
If the protocol crosses power or voltage domains it may require
isolation cells or level shifters to be inserted
It may need registers inserted to combat logic delays or race
conditions (also known as pipelining)

All of these transformations and bridging will result in a delay or
latency between the master initiating a transaction request and the
slave’s response.

A general rule of thumb in HW/SW interface design, the aim is to
minimize the number of transactions required to implement a
specific function.

16 / 51



Registers and Bitfields I

Registers are the common unit of granularity in the HW/SW
interface

Memory-mapped registers are the lowest direct level of HW/SW
interface and are usually the last addressable elements in the HW/SW
address decoding to have direct read/write communications.

The difference between a SAHE and a register is that the SAHE can
be any size, whereas memory-mapped registers are constrained by
the LAU as described earlier.

The register may have read-only access or read–write access.

Because of the volatile nature of hardware it is typical for most
writable registers to have a read back capability.
Bitfields are considered subsections of the register and can range
from a single bit wide to the width of the register.

Most bitfields have a one-to-one correspondence with SAHEs

17 / 51



Registers and Bitfields II

Bitfields, like SAHEs, can have the following characteristics:
The width of the bitfield
The offset of the bitfield within the register
The access type of the bitfield (e.g., read/write)
The value of the bitfield at reset.

In order to write to a register, the processor must execute an
instruction that references a particular memory-mapped address
within the processor address space.

18 / 51



Registers and Bitfields III

This instruction initiates a write transaction and the address,
control, and write data are routed through the system until they
arrive at the target IP Block.

19 / 51



Registers and Bitfields IV

It may be possible to provide a read or write burst across the registers
and the effects of the transaction latency can be reduced (averaged).

20 / 51



Registers and Bitfields V

Another method for reducing transactions is to superimpose additional
behavior with the transaction so that a read or write does more than
simply read or write. This additional behavior is also known as side
effects.
Hardware interrupt status registers are good examples of side
effects.

Encode an action into the write data to explicitly clear the interrupt
bit. This is called a Write-1-to-Clear (W1C) type of side effect and
setting a particular bit in the data to a 1 will just clear that bit in the
register, without affecting any others.

Further optimization - Read-to-Clear (R2C)
There are a wide range of nuances that exist in the real HW/SW
interface including:

W1C – Write 1 to clear
W0C – Write 0 to clear

21 / 51



Registers and Bitfields VI

R2C – Read to clear
R2S – Read to set
RRR – Read returns remote

These types of optimizations can challenge verification engineers to
cover HW/SW corner cases, such as ensuring that if a second
interrupt assertion happens in the same clock cycle as the access clear,
that the interrupt is not lost.

Also for hardware IP in systems, there are unlimited possibilities to
what can actually be implemented and corner cases exist in both
domains:

Registers that are mapped at multiple addresses
Registers with one address for read and one for write
Read-only registers that mimic a FIFO: every time they are read, a
different value is returned

22 / 51



Registers and Bitfields VII

Registers that change characteristics depending on the state of an
internal signal or other register. This is also known as auto-shadow or
modal
Indirect memory access where a set of registers is used to mimic a
transaction protocol that is used to access a bigger address space.

23 / 51



Overwiev

1 HW/SF Interface

2 HW/SW Design Flow for HW/SW Interfaces

3 HW/SW Interface Tools and Design Flows

4 SPIRIT/IP-XACT

24 / 51



HW/SW Design Flow for HW/SW Interfaces I

The HW/SW interface has traditionally been captured using a
document/paper specification.
Traditional HW/SW interface design flow

Example for the rest of section

25 / 51



HW/SW Design Flow for HW/SW Interfaces II

SAHE 1 : Reset_Counter : Read/Write, single-bit
SAHE 2 : Enable_Counter : Read/Write, single-bit
SAHE 3 : Counter_Value : Read only : 8-bit
SAHE 4 : Counter_Error : Read only : single-bit.

An IP designer will start to map these SAHEs into registers.

26 / 51



Specification – Documentation

The IP owner, or even the system architect, may capture the HW/SW
requirements in a documentation format.

27 / 51



IP-XACT (SPIRIT) I

A subset of IP-XACT can be used to specify memory maps, register,
and bitfield details.

...
<spirit:register>

<spirit:name>counter_ctrl_status</spirit:name>
<spirit:dim>1</spirit:dim>
<spirit:addressOffset>0</spirit:addressOffset>
<spirit:size spirit:resolve = "user">32</spirit:size>
<spirit:access>read-write</spirit:access>
<spirit:reset>

<spirit:value>0</spirit:value>
<spirit:mask>4294967295</spirit:mask>

</spirit:reset>
<spirit:field>

<spirit:name>ResetCounter</spirit:name>

28 / 51



IP-XACT (SPIRIT) II

<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth spirit:resolve = "user">1</spirit:bitWidth>
<spirit:access>read-write</spirit:access>
<spirit:description>resets the counter</spirit:description>
<spirit:values>

<spirit:value>0</spirit:value>
<spirit:description>counter it not reset</spirit:description>
<spirit:name>No_effect</spirit:name>

</spirit:values>
<spirit:values>

<spirit:value>1</spirit:value>
<spirit:description>Reset the counter. This value . . . </spirit:description>
<spirit:name>reset_counter</spirit:name>

</spirit:values>
</spirit:field> ...

29 / 51



SystemRDL I

The SystemRDL language, supported by the SPIRIT Consortium,
was specifically designed to describe and implement a wide variety of
control status registers.

reg { // REGISTER
// ADDRESSOFFSET 0x0
// ACCESS read-only

name = "counter_ctrl_status";
desc = "Counter status";
regwidth = 32;
default hw = rw; default sw = rw;
field {

name = "ResetCounter";
desc = "resets the counter";
hw = rw; sw = rw;
fieldwidth = 1;

30 / 51



SystemRDL II

} ResetCounter [0:0];
field {

name = "EnableCounter";
desc = "Enables the counter";
hw = rw; sw = rw;
fieldwidth = 1;

} EnableCounter [1:1];
...

} counter_ctrl_status @0x0; // END REGISTER

31 / 51



IP Hardware Design

An RTL model of the HW/SW interface requires logic that
translates the bus protocol into read and write access to specific
registers or memories.

Address decoding to enable write and read accesses
A model of the register.

32 / 51



IP Verification

From an IP (block level) point of view, HW/SW interface verification
is typically done using simulation-based approaches.
One of the main verification objectives is to exhaustively test the
write and read accesses to the IP block

Testing the address decode to ensure that not only are all the registers
at the correct address but that accessing invalid addresses has no
effect
Testing the reset value of the registers
Testing that all valid bits of a register can be accessed.
Testing that all side effects behave as specified.

Typically UVM is used

33 / 51



Chip-Level Verification I

Within a full chip-level view, the IP now has a system-level context
and sits somewhere in a memory map

The following are some typical errors in the HW/SW interface
Inconsistencies between a register specification and its corresponding
implementation including bitfield layout, register accesses, and reset
values
Address mirroring of registers because internal address buses are
defined to be too small
Incorrect address decoding
Incorrect memory map specification causing overlaps.

Because of the potential for errors and mismatches, the low-level
HW/SW interface therefore still needs a strong focus, even at chip
level.

At chip-level the HW/SW access can be tested between the origin of
the transaction (the processor interface) and the transaction target

34 / 51



Chip-Level Verification II

Chip-level testbenches, modeling environments, and test-case format
can be very different.

Test cases can be written using a HVL to emulate the processor
transactions by focusing on read/write transactions
The test cases may also be written in C and compiled as binaries
which are then run on a model of the embedded processor.

In order to achieve an acceptable level of coverage in the HW/SW
interface, it is important that registers are modeled from the
perspective of the processor.
This type of simulation-based methodology will yield poor simulation
times in an RTL simulator environment.

Another interesting approach is with formal verification which aims
to prove functional correctness through formal methods, requiring no
simulation.

35 / 51



Software Development – Firmware I

The lowest level SW/HW interaction needs efficient access to the
SAHEs and can do so by means of an API.
Essentially they are about reading and writing to a memory map.

Can be coded an infinite number of ways.
* ((volatile uint32_t * )0xffee0000) = 8;

Easy, but hard to maintain.

#define EVENTMONITOR_COUNTER_CTRL_STATUS 0xffee0000
* (volatile uint32_t * ) EVENTMONITOR_COUNTER_CTRL_STATUS

= 8;

#define EVENTMONITOR_COUNTER_CTRL_STATUS \
((volatile uint32_t * ) 0xffee0000)

* EVENTMONITOR_COUNTER_CTRL_STATUS = 8;

The Register model could also be described in a variety of different
C++ formats

36 / 51



Software Development – Firmware II

Functions are often used to encapsulate the low-level accesses and
when used with macros can be a good general method.
#define EVENTMONITOR_COUNTER_CTRL_STATUS_ENABLECOUNTER_MASK (U32T)0x00000002u
#define EVENTMONITOR_COUNTER_CTRL_STATUS_ENABLECOUNTER_OFFSET 1

extern void EventMonitor_WriteCounter_ctrl_status_EnableCounter (
const U32T baseAddress,
const U32T value)

{
const U32T offset = baseAddress + EVENTMONITOR_COUNTER_CTRL_STATUS_OFFSET;
register U32T data = RD_MEM_32_VOLATILE(offset);
register U32T newValue = value;
data &= ~(EVENTMONITOR_COUNTER_CTRL_STATUS_ENABLECOUNTER_MASK);
newValue <<= EVENTMONITOR_COUNTER_CTRL_STATUS_ENABLECOUNTER_OFFSET;
newValue &= EVENTMONITOR_COUNTER_CTRL_STATUS_ENABLECOUNTER_MASK;
newValue |= data;
WR_MEM_32_VOLATILE(offset, newValue);

}

37 / 51



Firmware Verification

Software can be developed and tested against a model of the
hardware.
The hardware model can be of different formats. It can range from
an RTL format which is a very accurate low-level hardware model to a
software model of the hardware, also called virtual models.
Depending on the software development criteria there are a range of
different models with different strengths and weaknesses.

38 / 51



Overwiev

1 HW/SF Interface

2 HW/SW Design Flow for HW/SW Interfaces

3 HW/SW Interface Tools and Design Flows

4 SPIRIT/IP-XACT

39 / 51



HW/SW Interface Tools and Design Flows I

The HW/SW interface has traditionally been captured using some
form of a document specification.

40 / 51



HW/SW Interface Tools and Design Flows II

All HW/SW interface related teams need to interpret the specification
and translate it to their native format. It may be possible for them to
give feedback where a change is required in the document.

Interpret–Translate–Feedback (ITF)

If the document is open to interpretation the wrong information may
get translated and cause a mismatch somewhere in the design flow.

A document-based process will introduce interpretation bugs,
synchronization bugs, and translation bugs at various stages in the
design flow.

41 / 51



Register Management Tools I

There are new tools emerging in the market that address this problem
through automated, correct-by-construction methodologies
dedicated to the HW/SW interface.

The main concept behind the solutions is to move away from using
documents to an executable specification.

42 / 51



Register Management Tools II

Main benefits of tools:
A user interface enabling efficient capture

43 / 51



Register Management Tools III

Usable from all perspectives -
HW/SW/design/verification/documentation
An extensive underlying model of the HW/SW interface
Extensive coherency checking at all levels
IP/sub-system and system capture and manipulation
Interfaces to standards like IP-XACT
Full regression capability to allow overnight builds of the HW/SW
interface
Flexible generators to generate a wide range of HW/SW design
verification collateral including.

Documentation - programming reference guide
RTL code for modeling registers
HVL code for IP and chip-level testbenches.
SystemC for virtual prototyping
Firmware header files.

The main benefits
Reduced front-end effort since all of the HW/SW collateral can be
automated from a single executable specification

44 / 51



Register Management Tools IV

Reduced verification effort because the HW/SW views are kept
consistent, coherent, and synchronized.
Turn-around time between an update to a register bitfield of an IP that
is used in a large system to fully updated design views
Ensure alignment between a virtual hardware model, the hardware RTL
model, and the real chip,

45 / 51



Overwiev

1 HW/SF Interface

2 HW/SW Design Flow for HW/SW Interfaces

3 HW/SW Interface Tools and Design Flows

4 SPIRIT/IP-XACT

46 / 51



IP Databases

Metadata is especially relevant for the level of IP blocks and the
associated models - whether hardware, software, or verification IP.
Meta-models convert the unstructured data found on component
datasheets or specifications into a more structured format that may
be amenable to tool-based processing.
The IP revolution had barely begun in the mid-1990s, when people
began looking at the conversion of unstructured datasheet information
(or its web equivalents) into more formal databases for IP
components or blocks.

47 / 51



IP-XACT

SPIRIT was set up as an industry consortium to standardize IP
metadata for design and design tools - IP-XACT.
SPIRIT consortium mergerd with Accellera
IP-XACT is XML-based metadata

48 / 51



RTL Assembly Level I

<?xml version = "1.0" encoding = "UTF-8"?>
<spirit:component

xmlns:spirit = "http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2

http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2/index.xsd">
<spirit:vendor>tensilica.com</spirit:vendor>
<spirit:library>DC_B_106micro_system</spirit:library>
<spirit:name>Xm_DC_B_106micro_noCGXttop</spirit:name>
<spirit:version>RB2007.2</spirit:version>
<spirit:busInterfaces>

<!-- Group: AHB-Lite Master -->
<spirit:busInterface>

<spirit:name>AHBLitemaster</spirit:name>
<spirit:busType spirit:vendor = "amba.com" spirit:library = "AMBA3"
spirit:name = "AHBLite" spirit:version = "r1p0_6"/>
<spirit:master>

<spirit:addressSpaceRef spirit:addressSpaceRef = "main"/>
</spirit:master>
<spirit:signalMap>

<spirit:signalName>
<spirit:componentSignalName>CLK</spirit:componentSignalName>
<spirit:busSignalName>HCLK</spirit:busSignalName>

</spirit:signalName>
<spirit:signalName>

<spirit:componentSignalName>HADDR</spirit:componentSignalName>
<spirit:busSignalName>HADDR</spirit:busSignalName>

</spirit:signalName>
<spirit:signalName>

49 / 51



RTL Assembly Level II

<spirit:componentSignalName>HRDATA</spirit:componentSignalName>
<!-- MORE AMBA AHB BUS follows -->

</spirit:signalMap>
</spirit:busInterface>

50 / 51



System Modeling Level

<spirit:port>
<spirit:logicalName>custom_tlm_port</spirit:logicalName>
<spirit:transactional>

<spirit:onMaster>
<spirit:service>

<spirit:initiative>provides</spirit:initiative>
<spirit:typeName implicit = "true">TLM</spirit:typeName>

</spirit:service>
</spirit:onMaster>
<spirit:onSlave>

<spirit:service>
<spirit:initiative>requires</spirit:initiative>
<spirit:typeName implicit = "true">TLM</spirit:typeName>

</spirit:service>
</spirit:onSlave>

</spirit:transactional>
</spirit:port>"

51 / 51


	HW/SF Interface
	HW/SW Design Flow for HW/SW Interfaces
	HW/SW Interface Tools and Design Flows
	SPIRIT/IP-XACT

