
Chapter 2
Pulse-Width Modulation

Jian Sun

2.1 Form and Function

Pulse-width modulation (PWM) is the basis for control in power electronics. The
theoretically zero rise and fall time of an ideal PWM waveform represents a pre-
ferred way of driving modern semiconductor power devices. With the exception of
some resonant converters, the vast majority of power electronic circuits are con-
trolled by PWM signals of various forms. The rapid rising and falling edges ensure
that the semiconductor power devices are turned on or turned off as fast as practi-
cally possible to minimise the switching transition time and the associated switching
losses. Although other considerations, such as parasitic ringing and electromagnetic
interference (EMI) emission, may impose an upper limit on the turn-on and turn-off
speed in practical situations, the resulting finite rise and fall time can be ignored in
the analysis of PWM signals and processes in most cases. Hence only ideal PWM
signals with zero rise and fall time will be considered in this chapter.

Pulse-width modulation can take different forms [3]. The pulse frequency is one
of the most important parameters when defining a PWM method and can be either
constant or variable. A constant-frequency (CF) PWM signal can be produced sim-
ply by comparing a reference signal, r(t), with a carrier signal, c(t), as depicted in
Fig. 2.1a. The binary PWM output can be mathematically written as

bpwm(t) = sgn
[
r(t) − c(t)

]
, (2.1)

where ‘sgn’ is the sign function.
Three types of carrier signals are commonly used in constant-frequency PWM:

1. Sawtooth Carrier, reported in Fig. 2.1b: The leading (rising) edge of PWM output
occurs at fixed instants in time while the position of the trailing (falling) edge is
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Fig. 2.1 Constant-frequency
PWM implemented by a
comparator with different
carrier signals

modulated as the reference signal level varies. Hence the method is also called
constant-frequency trailing-edge modulation.

2. Inverted Sawtooth Carrier, reported in Fig. 2.1c: The trailing (falling) edge of
PWM output occurs at fixed instants in time while the position of the leading
(rising) edge is modulated as the reference signal level varies. The method is
usually referred to as constant-frequency leading-edge modulation.

3. Triangle Carrier, reported in Fig. 2.1d: Both the leading edge and the trailing
edge of the PWM output is modulated. The rising and falling edge of the triangle
are usually symmetric so that the pulse is centred within a carrier cycle when
the reference is a constant. The method is called constant-frequency double-edge
modulation.

Trailing-edge modulation is most common in DC–DC converters. As will be dis-
cussed in the next section, double-edge modulation eliminates certain harmonics
when the reference is a sine wave, and is a preferred method for AC–DC and DC–
AC converters where the PWM reference contains a sinusoidal component. A com-
bination of synchronised leading-edge and trailing-edge modulation has also been
used to control a boost single-phase power factor correction (PFC) converter and a
buck DC–DC converter to reduce ripple in the intermediate DC bus capacitor [25].

The illustrations in Fig. 2.1 assumed analog implementation. When digital imple-
mentation is used, the reference is usually sampled at a regular frequency and the
carrier can be replaced by a counter/timer. To avoid multiple switching transition
within a carrier cycle, the reference should be sampled at the point where the carrier
reaches its peak or valley [9]. Pulse-width modulation using such sampled refer-
ences is called regular-sampling PWM. To distinguish from such sampled PWM,
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Fig. 2.2 Variable-frequency PWM with constant OFF-time

the analog version discussed before is also called natural-sampling PWM in the lit-
erature. With a sawtooth or inverted sawtooth carrier, samples are usually taken at
the beginning of a carrier cycle. With a triangle carrier, on the other hand, the refer-
ence can be sampled either once at the peak of the triangle or twice at both the peak
and the valley of the triangle; the former is referred to as symmetrical sampling,
while the latter is called asymmetrical sampling due to the fact that the rising and
falling edge of the triangle are compared with different samples of the reference.
Regular-sampling PWM is usually used in high power inverters and rectifiers and
will not be further discussed in this chapter. On the other hand, the effects of sam-
pling can be incorporated into the PWM spectral models by modifying the double
Fourier integral to be presented in the following sections [9].

Variable-frequency (VF) PWM, although not as popular as CF PWM, has also
been used in practice. Three common variations of VF PWM are: (a) constant OFF-
time, variable ON-time; (b) constant ON-time, variable OFF-time; and (c) hysteretic
control. Figure 2.2 depicts constant OFF-time, variable ON-time PWM using a
sawtooth-like carrier signal. The switch is turned on after a fixed OFF-time, Toff,
at which point the sawtooth signal also starts to rise at a constant rate. The switch
is turned off again when the sawtooth signal intersects with the reference, at which
point the carrier signal is reset to zero. The switch is then kept OFF for a fixed time
(Toff) again before the next switching cycle starts. As can be seen, the ON-time
changes with the reference and the switching frequency increases with the decrease
in the reference level, resulting in a variable frequency operation when the reference
varies. Constant ON-time, variable OFF-time can be implemented in a similar man-
ner. A popular application of the VF PWM is in boundary-mode control of boost
power factor correction (PFC) converters, where the switch operates with a constant
ON-time and is turned on as soon as the diode current reduces to zero, resulting in an
average input current that is proportional to the input voltage [22]. Hysteretic con-
trol is usually applied in conjunction with a current or voltage regulator, and doesn’t
involve an explicit PWM process. It will not be further discussed in this chapter.

One common concern about VF PWM is the difficulty associated with the design
of input and output filters. The filter corner frequency would have to be selected
based on the lowest possible switching frequency in order to provide the required
attenuation for ripple and EMI under all operation conditions. This usually leads to
a conservative design with significant volume and cost penalties. On the other hand,
both constant ON-time and constant OFF-time VF PWM exhibit a leading phase
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angle in their small-signal dynamic transfer functions, as will be demonstration in
Sect. 2.3 of this chapter. Since the modulator is part of the feedback control loop,
such a leading phase boosts the phase angle of the loop at high frequencies, thereby
improving the stability.

The reference signal depends on the application and is usually independent of
the modulation method. For DC–DC converters, the PWM reference is a constant
when the converter operates in a steady state but varies whenever the converter goes
through a transient. The spectral characteristics of such a PWM waveform with
constant frequency and constant duty ratio can be readily determined by Fourier
analysis. To characterise the dynamic behaviour of a modulator in DC–DC convert-
ers, the reference can be assumed to consist of a DC value corresponding to the
steady-state duty ratio and a sinusoidal component representing a small-signal per-
turbation. A small-signal model can be obtained for the modulator by computing the
component in the PWM output at the frequency of the sinusoidal perturbation. Such
small-signal models will be developed in Sect. 2.3 for both constant-frequency and
variable-frequency PWM.

For AC–DC and DC–AC converters, the reference signal typically contains at
least one sinusoidal component at the fundamental frequency of the AC input or
output of the converter. For poly-phase (e.g. three-phase) converters, each phase
will have a separate reference and their sinusoidal components are shifted from
each other by the same phase angle that separates the input or output phase voltages.
Often, the PWM references also contain harmonics of the fundamental component.
This is the case, for example, in three-phase converters where triple harmonics can
be purposely injected into the PWM references to increase the utilisation of the DC
voltage, that is, to maximise the AC voltages that can be produced from a given DC
voltage source before the modulator saturates [20].

For the reasons stated above as well as for the purpose of developing general
PWM models, the reference signal, r(t), is this chapter is assumed to consist of a
DC and a single-frequency sinusoidal component in general:

r(t) = R0 + R1 cos(2πf1t + θ1). (2.2)

This will be used in the spectral analysis of different PWM methods in the next
two sections. Each of the amplitudes R0 and R1 can be set to zero depending on the
specific applications under study. Additional harmonics can also be included in (2.2)
if needed.

Mathematical analysis will be presented for different PWM processes in the fol-
lowing sections to develop a more in-depth understanding of their characteristics
and to provide models that can be used for different design purposes. Section 2.2
introduces double Fourier series as a general method to characterise constant-
frequency PWM processes. Spectral characteristics of different PWM methods are
also compared using the double Fourier series models. Section 2.3 discusses small-
signal modelling of both constant-frequency and variable-frequency pulse-width
modulator for dynamic modelling and control design of DC–DC converters. The
section also studies the effects of interleaved PWM of multiple converter modules
and uses the analytical spectral models to characterise the ripple cancellation effects
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under different interleaving strategies. Section 2.4 discusses peak current control,
a control method widely used in DC–DC converters where the inductor current is
used in place of the carrier signal for PWM control.

2.2 PWM Spectral Modelling and Characteristics

This section presents the development of mathematical models for constant-
frequency PWM signals where the reference is defined by (2.2). All three types
of carrier signals—sawtooth, inverted sawtooth and triangle—will be considered.
The objective is to obtain analytical models that describe the PWM output spectrum
when each type of carrier signal is used. Such spectral models are especially im-
portant for AC–DC and DC–AC converter applications where the PWM spectrum
is directly related to the harmonics in the input or output voltage and current of the
converter.

A periodic function can be represented by a Fourier series. A PWM waveform
is periodic if the carrier frequency, denoted as fc hereafter, and the fundamental
frequency f1 of the reference defined in (2.2) are commensurable, that is, if the
frequency ratio fc/f1 is a rational number. In the special case when fc is a multi-
ple of f1, Fourier analysis can be performed on the PWM waveform over a period
corresponding to one cycle of the reference, that is, a time interval equal to 1/f1.
However, even in such a special case, carrying out the Fourier analysis is not an
easy undertaking because each switching point in the PWM waveform is defined
by a trigonometric equation involving both the sinusoidal reference defined by (2.2)
and a linear function of time representing the carrier signal. Since such equations
can only be solved numerically, the Fourier analysis results will be specific to the
case analysed and have to be redeveloped if any parameter involved changes. In the
more likely case where the carrier frequency is not a multiple of (but still commen-
surable with) the reference fundamental frequency, Fourier analysis would have to
be performed over an interval corresponding to multiple fundamental cycles, mak-
ing the numerical problem quickly intractable.

The double Fourier series method introduced below solves this problem by re-
formulating the mathematics that define the PWM waveform. Instead of the original
function of time involving two different frequencies, a new two-dimensional func-
tion is introduced where the carrier and the reference fundamental frequency each
corresponds to an independent variable. The two-dimensional function is decom-
posed using a double Fourier series which is then converted back into a function of
time involving both frequencies to give the spectrum of the original PWM wave-
form.

2.2.1 Double Fourier Series Method

Double Fourier analysis is a generalisation of the conventional Fourier analy-
sis to two-dimensional functions. According to mathematical theory [24], a two-
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dimensional function f (x, y) that is periodical in both x and y, with a period equal
to 2π in both axes, can be represented by a double Fourier series in the form of

f (x, y) = A00

2
+

+∞∑

n=1

(A0n cosny + B0n sinny) +
+∞∑

m=1

(Am0 cosmx + Bm0 sinmx)

+
+∞∑

m=1

±∞∑

n=±1

(
Amn cos(mx + ny) + Bmn sin(mx + ny)

)
, (2.3)

where the coefficients are defined as follows:

Amn = 1

2π2

∫ 2π

0

∫ 2π

0
f (x, y) cos(mx + ny)dx dy, (2.4)

Bmn = 1

2π2

∫ 2π

0

∫ 2π

0
f (x, y) sin(mx + ny)dx dy. (2.5)

Double Fourier series method was first used to model PWM signals in for com-
munication applications [2]. Reference [13] presented spectral models of different
PWM signals using this method. Application of the method in power electronics first
appeared in [5], and more systematically in [9]. The book [3] by Black provides a
detailed explanation of the double Fourier analysis method as applied to constant-
frequency trailing-edge PWM. The review below follows the presentation of [3] in
order to develop an understanding of the original and elegant idea introduced in [2].

The first step is to reformulate the PWM process such that it can be described
by a two-dimensional function. This is illustrated in Fig. 2.3 for constant-frequency
trailing-edge modulation. Figure 2.3a shows the sawtooth carrier and the reference
signal, and Fig. 2.3b shows the resulting PWM output. Figure 2.3c is generated by
stacking multiple carrier and reference sets {(c(t), r(t)}, {Cm + c(t),Cm + r(t)},
{2Cm + c(t),2Cm + r(t)}, . . . , where Cm is the peak-peak amplitude of the carrier
signal. Line AB is an extension of the first slope of the original sawtooth signal. The
horizontal lines l1, l2, . . . , separate the stacked carriers and are spaced from each
other by Cm. Note that the intersection points of line AB with these lines and the
stacked references are the same as those between the original carrier and reference
shown in Fig. 2.3a. Hence they define the same PWM waveform. This provides an
alternative way to define, mathematically, the trailing-edge PWM process.

A similar representation can be developed for other PWM methods. Figure 2.4
shows how this is done for double-edge modulation using a triangle carrier. Unlike
in the case with a sawtooth carrier, an alternate sequence of the original carrier
and reference and their inverse are stacked in this case. In other words, the stacked
carriers are c(t), 2Cm −c(t), 2Cm+c(t), 4Cm−c(t), . . . , and the stacked references
are r(t), 2Cm − r(t), 2Cm + r(t), 4Cm − r(t), . . . . Line AB is an extension of
the rising edge of the first triangle of the original carrier, c(t). Note again that the
intersection points of line AB with the stacked references are the same as those
between the original carrier and reference.
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Fig. 2.3 CF trailing-edge
modulation and its alternative
representation for the
development of a double
Fourier series

The second step in the development of a double Fourier series representation is to
define a two-dimensional function based on the alternative arrangement introduced
above. Take double-edge modulation as example. Redefine the horizontal axis in
Fig. 2.4c as x axis and let x = 2πf1t + θ1. Additionally, redefine the vertical axis
as y axis and let y = 2πfct + θc so that the height of the triangle in the original
coordinate system corresponds to π in y. θ1 and θc are the initial phase angle of the
reference and the carrier at t = 0, respectively. This new x–y coordinate system is
illustrated in Fig. 2.5a where the stacked reference waveforms are represented by
the edge of the shadowed areas. Imagine now a three-dimensional graph defined by
a function z = f (x, y) which is equal to +1 when the point (x, y) lies inside any of
the shadowed areas, and −1 otherwise, as illustrated in Fig. 2.5b. It is obvious that is
periodic in both x and y, with a common period equal to 2π . Therefore, f (x, y) can
be represented by a double Fourier series. Note that the double Fourier coefficients
are defined analytically and no numerical values are involved up to this point.

Line AB in the x–y–z coordinate system is defined implicitly by x = 2πf1t + θ1

and y = 2πfct +θc. Imagine now a vertical plane is erected along the line, indicated
by the dashed line in Fig. 2.5b. This plane cuts across the three-dimensional graph
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Fig. 2.4 CF double-edge
modulation and its alternative
representation for the
development of a double
Fourier series

defined above, and the intersection area, defined mathematically by

f (2πf1t + θ1,2πfct + θc), (2.6)

has the same shape as the PWM waveform. Therefore, a spectral model is obtained
for the PWM waveform when x and y in the double Fourier series representation
of f (x, y) are replaced by x = 2πf1t + θ1 and y = 2πfct + θc, respectively. Note
again that there is no need to explicitly define the PWM waveform and no limitations
are imposed on the relationship between the carrier and the reference fundamental
frequency.

With some minor modification of the two-dimensional function, the same pro-
cedure can be applied to other PWM methods. Although natural-sampling PWM
has been assumed in the development so far, the method can be applied to regular-
sampled PWM by using the sampled form instead of the original references.
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Fig. 2.5 Definition of a
two-dimensional function
fk(x, y) for double Fourier
analysis

2.2.2 PWM Spectral Models

Double Fourier series models are given below for commonly used constant-
frequency PWM methods. The reference is assumed to be defined by (2.2) in gen-
eral. For the convenience of application in different power electronic circuits, we
will consider

• Unipolar modulation: The carrier changes between 0 and a positive peak (Cm);
the reference is always positive; and the PWM output switches between 0 and 1;
and
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• Bipolar modulation: The carrier is symmetric about zero, with a amplitude equal
to Cm; the reference is a sine wave without DC offset; and the PWM output
switches between −1/2 and +1/2.

The angular frequency of the carrier and the reference will be denoted
ωc(= 2πfc) and ω1(= 2πf1), respectively, and will be used in place of fc and f1

when it is convenient. The initial phase angles of the carrier and the reference (de-
noted by θ1 and θc) will be assumed nonzero in general. Two additional parameters
as defined below are also used to simplify the expressions:

• The average duty ratio:

D = R0

Cm

; (2.7)

• The modulation index:

M = 2R1

Cm

. (2.8)

Each spectral model also involves Bessel functions of the first kind, Jn(z), de-
fined as follows:

Jn(z) = j−n

π

∫ 2π

0
ejz cos θ ejnθ dθ. (2.9)

This function arises from the double integral involved in the definition of the double
Fourier series coefficients (2.4) and (2.5). The argument z can be a real or complex
number, and the function is real-valued if z is real. The other argument, n, is real
and will always be an integer in the applications discussed here. Characteristics of
the Bessel functions will be reviewed in the next subsection.

1. Unipolar Trailing-Edge Modulation, see Fig. 2.6:

bpwm(t) = D + M

2
cos(ω1t + θ1)

+
+∞∑

m=1

1

mπ

{
sin

[
m(ωct + θc)

]

− J0(mπM) sin
[
m(ωct + θc) − 2mDπ

]}

+
+∞∑

m=1

±∞∑

n=±1

Jn(mπM)

mπ

× sin

[
nπ

2
− m(ωct + θc) − n(ω1t + θ1) + 2mDπ

]
. (2.10)
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Fig. 2.6 Unipolar trailing-edge modulation using a sawtooth carrier

Fig. 2.7 Bipolar trailing-edge modulation using a sawtooth carrier

2. Bipolar Trailing-Edge Modulation, see Fig. 2.7 with R0 = 0:

bpwm(t) = M

2
cos(ω1t + θ1)

+
+∞∑

m=1

1

mπ

[
cos(mπ) − J0(mπM)

]
sin

[
m(ωct + θc)

]

+
+∞∑

m=1

±∞∑

n=±1

Jn(mπM)

mπ
sin

[
nπ

2
− m(ωct + θc) − n(ω1t + θ1)

]
.

(2.11)

3. Unipolar Leading-Edge Modulation, see Fig. 2.8:

bpwm(t) = D + M

2
cos(ω1t + θ1)

−
+∞∑

m=1

1

mπ

{
sin

[
m(ωct + θc)

]

− J0(mπM) sin
[
m(ωct + θc) + 2mDπ

]}

−
+∞∑

m=1

±∞∑

n=±1

Jn(mπM)

mπ

× sin

[
nπ

2
− m(ωct + θc) − n(ω1t + θ1 + π) − 2mDπ

]
.

(2.12)
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Fig. 2.8 Unipolar leading-edge modulation using a sawtooth carrier

Fig. 2.9 Bipolar leading-edge modulation using a sawtooth carrier

4. Bipolar Leading-Edge Modulation, see Fig. 2.9 with R0 = 0:

bpwm(t) = M

2
cos(ω1t + θ1)

−
+∞∑

m=1

1

mπ

[
cos(mπ) − J0(mπM)

]
sin

[
m(ωct + θc)

]

−
+∞∑

m=1

±∞∑

n=±1

Jn(mπM)

mπ

× sin

[
nπ

2
− m(ωct + θc) − n(ω1t + θ1 + π)

]
. (2.13)

5. Unipolar Double-Edge Modulation, see Fig. 2.10:

bpwm(t) = D + M

2
cos(ω1t + θ1)

+
+∞∑

m=1

2

mπ
J0

(
mπM

2

)
sin(Dmπ) cos

[
m(ωct + θc)

]

+
+∞∑

m=1

±∞∑

n=±1

2

mπ
Jn

(
mπM

2

)
sin

(2Dm + n)π

2

× cos
[
m(ωct + θc) + n(ω1t + θ1)

]
. (2.14)
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Fig. 2.10 Unipolar leading-edge modulation using a sawtooth carrier

Fig. 2.11 Bipolar double-edge modulation using a triangle carrier

6. Bipolar Double-Edge Modulation, see Fig. 2.11 with R0 = 0:

bpwm(t) = M

2
cos(ω1t + θ1)

+
+∞∑

m=1

2

mπ
J0

(
mπM

2

)
sin

mπ

2
cos

[
m(ωct + θc)

]

+
+∞∑

m=1

±∞∑

n=±1

2

mπ
Jn

(
mπM

2

)
sin

(m + n)π

2

× cos
[
m(ωct + θc) + n(ω1t + θ1)

]
. (2.15)

The double Fourier analysis method can also be used to develop spectral models
for regular-sampled PWM by replacing the reference functions by their sampled
version [9]. The method is also applicable when the reference contains more than
one sine component (as long as it is periodic). However, the double integrals cannot
be simplified by using the Bessel functions when the reference contains more than
one sine component. Nevertheless, the double integral formulation in that case still
provides a simple way to define the spectral model and can be evaluated numerically
when quantitative analysis is needed.
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2.2.3 Spectral Characteristics of PWM Converters

Each of the spectral models (2.10)–(2.13) contains a component that is in-phase
with the sinusoidal component in the reference. The amplitude of this component,

M

2
= R1

Cm

,

is equal to that of the reference scaled down by the amplitude of the carrier. A DC
component also exists in the PWM output under unipolar modulation, and its ratio
to the DC component in the reference is equal to the reciprocal of the amplitude of
the carrier, the same as that for the sine component. This linear relationship is an
important characteristic of constant-frequency PWM and will be further discussed
in the next section on small-signal modelling.

Besides the DC and the fundamental sine component, each PWM waveform con-
tains many harmonics which can be grouped as follows:

1. Carrier frequency and its harmonics, at frequencies f = mfc, m = 1,2, . . . ,+∞.
These components exist regardless whether the reference is constant or variable.

2. Sideband harmonics of the carrier and its harmonics, at frequencies f = mfc +
nf1, n = ±1,±2, . . . ,±∞.

The sideband harmonics only appear when the reference is modulated. The am-
plitude of the sideband harmonic at frequency f = mfc + nf1 is equal to

Jn(mπM)

mπ
(2.16)

for leading- or trailing-edge modulation, and to

2

mπ
Jn

(
mπM

2

)
(2.17)

for double-edge modulation. Note that (2.17) can be converted to (2.16) by redefin-
ing the parameter M for double-edge modulation. Additionally, since

∣
∣Jn(x)

∣
∣ = ∣

∣J−n(x)
∣
∣ (2.18)

the sideband harmonic at frequency f = mfc + nf1 has the same magnitude as that
at frequency f = mfc − nf1 for any integer m and n; in other words, sideband har-
monics appear in pairs and are symmetric about each carrier harmonic. Figure 2.12
depicts Bessel functions J0(x) through J10(x) to show their basic characteristics.

Unipolar modulation is usually used in DC–DC converters where the reference
is constant except during transient. The sideband harmonics in this case are instru-
mental in explaining the time-varying behaviour in small-signal analysis when the
perturbation frequency approaches half the switching frequency, which will be dis-
cussed in the next section. Bipolar modulation, on the other hand, is commonly used
in PWM inverters and rectifiers. A basic building block for such converters is the
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Fig. 2.12 A plot of Bessel functions J0(x) through J10(x)

Fig. 2.13 A half-bridge
circuit serving as a basic
building block for AC–DC
interface

half-bridge circuit depicted in Fig. 2.13. The AC terminal is alternately connected
to the positive and the negative terminal of the DC link depending on whether the
upper-side switch, Sh, or the lower-side switch, Sl , is turned on. Usually the two
switches are controlled by complementary gate signals such that at any time one
and only one switch conducts. If the middle of the DC link is used as the refer-
ence point and a bipolar PWM signal vpwm(t) defined in the previous subsection is
applied to the upper switch, the DC and the AC voltages are related to each other by

vac(t) = vdc(t)vpwm(t). (2.19)

With a constant DC-link voltage, vac is proportional to the PWM signal such
that a spectral model can be readily obtained for vac from the bipolar PWM spec-
tral models developed in the previous subsection. Therefore, the performance of
the three bipolar PWM methods can be compared on the basis of their spectral
models (2.11), (2.13) and (2.15). To that end, note first that the carrier harmonics
and their sideband harmonics produced by trailing-edge bipolar PWM are equal
in amplitude to the corresponding harmonics in leading-edge modulation. Hence
these two methods have the same performance as far as harmonics are concerned.
To compare them with double-edge bipolar modulation, the amplitudes of the first
three carrier harmonics (m = 1,2,3) and their sideband components are tabulated
in Table 2.1 for n = ±1,±2,±3. The comparison shows that double-edge mod-
ulation produces far fewer harmonics. In particular, the harmonic at frequency
f = mfc + nf1 is zero if m + n is even because the amplitude of the harmonic
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Table 2.1 Comparison of carrier and sideband harmonics predicted by (2.11) and (2.15)

n m = 1, (2.11) m = 1, (2.15) m = 2, (2.11) m = 2, (2.15) m = 3, (2.11) m = 3, (2.15)

−3 0.0697 0 0.0573 0.0697 0.0279 0

−2 0.1426 0.1099 0.0059 0 0.0236 0.0881

−1 0.1572 0 0.0526 0.1572 0.0154 0

0 0.3008 0.4090 0.1860 0 0.1338 0.0853

1 0.1572 0 0.0526 0.1572 0.0154 0

2 0.1426 0.1099 0.0059 0 0.0236 0.0881

3 0.0697 0 0.0573 0.0697 0.0279 0

Fig. 2.14 A pulse-width
modulator as part of a
feedback control system

includes the term

sin
(m + n)π

2
(2.20)

which is zero when m + n is even. In other words, double-edge modulation elim-
inates all even-order sideband harmonics of even-order carrier harmonics, as well
as odd-order sideband harmonics of odd-order carrier harmonics. The reduced har-
monic content is a significant advantage of double-edge modulation and makes the
method more attractive for AC–DC and DC–AC converter application.

2.3 Small-Signal Modelling

Pulse-width modulator is an integral part of feedback control in power electronics.
The reference signal, r(t), used in the spectral analysis in the previous section is
usually the output of a feedback controller (compensator), as depicted in Fig. 2.14
where H(s) denotes the feedback controller transfer function. The modulation pro-
cess itself, as demonstrated by the spectral models presented in the previous section,
is highly nonlinear. Since most practical designs use linear control, a linear, time-
invariant model that captures the small-signal behaviour of a modulator is needed
for converter-level analysis and control design. Such small-signal models are de-
veloped in this section for both constant-frequency and variable-frequency PWM.
The second topic treated here is interleaving—the operation of multiple pulse-width



2 Pulse-Width Modulation 41

Fig. 2.15 Basic DC–DC
converter topologies

modulators with phase-shifted carrier signals. We will briefly discuss the applica-
tion of interleaving in parallel- and series-connected converters, and use the spectral
models developed in the previous section to characterise the harmonica cancellation
effects resulting from different interleaving arrangements.

2.3.1 Small-Signal Modelling of Constant-Frequency PWM

A PWM-controlled converter can be described by a set of linear differential equa-
tions in each conduction state of the switches if all components are linear and the
switches (including diodes) are assumed ideal. The number of possible conduction
states depends on the number of switches and the operation pattern of the converter.
Figure 2.15 depicts three basic DC–DC converter circuits each of which uses one
switch and one diode. In the continuous conduction mode (CCM) of operation [23],
that is, when the inductor current flows continuously, the diode conducts whenever
the switch is OFF, such that there are only two possible conduction states over a
switching cycle: (a) the switch is ON and the diode is OFF; (b) the switch is OFF

and the diode is ON. With the inductor current (iL) and the output capacitor voltage
(v0) modelled as state variables, each of these converters can be described by two
state-space models as follows where x = (iL, v0)

�, u = (vin, i0)
�:

ẋ = A0x + B0u (2.21)

when the switch is OFF, and

ẋ = A1x + B1u (2.22)
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when the switch is ON. Denoting the unipolar PWM signal that drives the switch as
s(t), that is, s(t) = 0 when the switch is OFF and s(t) = 1 when the switch is ON,
one can combine the two equations as follows:

ẋ = [
A0 + (A1 − A0)s(t)

]
x + [

B0 + (B1 − B0)s(t)
]
u. (2.23)

This model is not amenable to linear control design due to the time-varying con-
trol function s(t) being multiplied with the state and input variables. A standard
technique to deal with such time-varying problem is averaging [6]. In this method,
the right-hand side of (2.23) is replaced by its “moving” average over a switching
cycle, resulting in the so-called state-space averaged model where the binary switch-
ing function s(t) is replaced by its algebraic average over a switching cycle, that is,
the duty ratio d of the switch [6]:

d

dt
〈x〉 = [

A0 + (A1 − A0)d
]〈x〉 + [

B0 + (B1 − B0)d
]
u. (2.24)

The duty ratio is the control variable in the new averaged model, which is non-
linear in general due to the presence of the product between the duty ratio and the
state variables.1 A linear model suitable for linear control design can be obtained
by conventional small-signal linearisation about a given operation point. Since it is
the modulator reference, r(t), that is actually controlled, a transfer function from
the modulator input to the duty ratio of its PWM output is needed to complete such
a small-signal model. This transfer function is usually referred to as the modulator
gain and can be developed in either the time or the frequency domain.

To develop the modulator gain in the time domain, assume the reference consists
of a constant, R0, corresponding to the DC operation point of the converter about
which the small-signal model is being developed. The corresponding steady-state
duty ratio is denoted as D. Consider now that a small-signal perturbation, R̂, is
added to the reference. It’s a matter of simple algebra to show that the corresponding
perturbation in the duty ratio is

d̂ = R̂

Cm

(2.25)

for any of the constant-frequency PWM methods reviewed in Sect. 2.1. Therefore,
the gain of a CF pulse-width modulator is the reciprocal of the amplitude, Cm, of
the carrier signal regardless what form of carrier is used.

To develop a small-signal modulator model in the frequency domain, consider a
reference defined by (2.2) where the DC component, R0, corresponds to the steady-
state operation point and the second term defines a small-signal perturbation at fre-
quency f1. Each of the spectral models (2.10)–(2.15) developed in the previous

1An exception is the buck converter and its derivatives where switching only changes the connec-
tion of the input voltage to the converter. Therefore, the only nonlinear term in the averaged model
is the product between the duty ratio and the input voltage, and the model is linear if the input
voltage is assumed constant.
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section contains a component at the same frequency and is in-phase with the pertur-
bation in r(t). The amplitude of this perturbation term is equal to

M

2
= R1

Cm

(2.26)

which shows again that the modulator gain is 1/Cm regardless the form of the carrier
signal.

The discussion above did not consider possible sideband components that could
appear at the perturbation frequency and affect the small-signal response of the mod-
ulator. Based on (2.10)–(2.15), the frequency of the sideband components can be
written as

mfc + nf1, m = 1,2, . . . ,+∞, n = ±1,±2, . . . ,±∞. (2.27)

When the perturbation frequency, f1, is at half the carrier frequency, for example,
the frequency of the sideband component corresponding to m = 1 and n = −1 is

f = fc − f1 = 2f1 − f1 = f1, (2.28)

which is the same as the perturbation frequency. For unipolar trailing-edge modula-
tion, this sideband component is

−J−1(πM)

π
cos[ω1t − θ1 + θc − 2Dπ].

The coincidence of such a sideband component with the response of the modu-
lator at the perturbation frequency presents several problems for linear analysis:

1. The amplitude of the sideband component is a nonlinear function of the pertur-
bation;

2. The phase difference to the reference, 2θ1 − θc + 2Dπ , is not constant and de-
pends on the initial phase of the perturbation as well as the carrier.

The nonlinear amplitude can be replaced by a linear approximation of the Bessel
function under small-signal assumption, that is, by assuming M � 1. However, the
variable phase angle indicates that the response of the modulator at the perturbation
frequency is dependent of the initial phase angle of the perturbation. Such time-
varying behaviour violates the underlying assumption for linear analysis and repre-
sents a fundamental limitation of the small-signal linear model and the associated
linear control design techniques for PWM converters.

In general, a sideband component at frequency mfc + nf1 will appear at the
perturbation frequency, fc, if the latter is such that

f1 = mfc

1 − n
, m = 1,2, . . . ,+∞, n = 0,−1,−2, . . . ,−∞. (2.29)

However, since the amplitude of the sideband component at frequency is propor-
tional to Bessel function Jn(x) and the lowest-order term in the Taylor expansion of
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Jn(x) is proportional to

x|n|

2|n|n! , (2.30)

the contribution of such a sideband component to the modulator response at the per-
turbation frequency can be ignored for the purpose of small-signal analysis except
for the cases of n = 0 and n = −1, in other words, when the perturbation frequency
is a multiple of half the carrier frequency:

f1 = mfc

2
, m = 1,2, . . . ,+∞. (2.31)

The above equation indicates that the lowest frequency at which small-signal re-
sponse of a pulse-width modulator is affected by sideband components and is no
longer time-invariant is half the carrier frequency. This places an upper frequency
limit on the validity of averaged models of PWM converters. Nonlinear control
methods that overcome this limit of linear models are discussed in other chapters
of this book.

Averaging effectively removes the switching ripple in the responses of a
converter. If necessary, the ripple can be recovered from the averaged model.
A method [16] to reconstruct switching ripple from the averaged model of a PWM
converter will be discussed in Sect. 2.4 in conjunction with modelling of peak-
current control.

The straightforward state-space averaging method as used above is only appli-
cable to PWM converters operating in the continuous conduction mode. In the dis-
continuous conduction mode (DCM), the inductor current returns to zero in each
switching cycle such that the diode only conducts for a portion of the interval in
which the switch is OFF. This leads to a third interval over a switching cycle in
which both the switch and the diode are OFF. The state-space model of the converter
in this third interval needs to be included in the averaged model. Additionally, since
the length of the conduction interval of the diode depends on several parameters and
is not constant, a so-called duty ratio constraint is needed to relate the duty ratio of
the diode to other variables in order to completely define the averaged model. These
are discussed in reference [23], which also includes analytical small-signal models
for the three basic converters shown in Fig. 2.15.

A major focus of power electronics research in the 1980s and 1990s was the
development of various resonant-type converters. The basic idea of resonant con-
verters is to create a resonance in the voltage or current of a switch by using addi-
tional passive and/or active devices. The resonant response causes the switch volt-
age or current to naturally return to zero, thereby allowing the switching operation
to occur under zero-voltage or zero-current conditions to significantly reduce the
switching transition loss. Averaged modelling of resonant converters is complicated
by the presence of additional time constants of the resonant circuit. Singular per-
turbation theory and time-scale separation techniques can be applied to deal with
such multiple-time-scale systems and to develop averaged models that can be used
for linear control design [21]. The modulator model presented above can still be
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used. Some resonant converters, such as quasi-resonant and load-resonant convert-
ers, require variable-frequency PWM control, which will be discussed in the next
subsection.

The control method depicted in Fig. 2.14 is essentially the voltage-mode control,
in which the switch duty ratio is derived directly from the error signal of the output
voltage. The duty ratio to output voltage transfer function, which can be obtained
from the small-signal linearised averaged model, is of second-order for second-order
converters such as those depicted in Fig. 2.15, with highly under-damped resonant
poles. It is difficult to achieve fast control for such second-order systems because
the crossover frequency of the voltage control loop usually has to be kept below the
power stage resonant frequency in order to ensure sufficient stability margin. An
additional difficulty of voltage-mode control for boost and buck–boost converters
is the existence of a right half-plane (RHP) zero in the duty ratio to output voltage
transfer function, which is usually at a frequency even lower than the power stage
resonant frequency. Current-mode control, in which an additional loop is closed for
the inductor current, can be used to solve these problems. Section 2.4 will present
one of such current control methods, the peak-current control.

2.3.2 Small-Signal Modelling of Variable-Frequency PWM

The modulator gain developed in the previous subsection is valid for constant-
frequency PWM. Variable-frequency modulators exhibit unique features in their
small-signal behaviour and are modelled here.

Consider first the constant-OFF-time VF PWM, which is illustrated in Fig. 2.16
for two cases:

1. The reference r(t) is constant;
2. The reference r(t) consists of a constant and a small-signal perturbation, as de-

fined by (2.2).

The resulting PWM outputs are shown as v1 and v2, respectively. By definition, the
small-signal gain of the modulator is the ratio of the component in v2 that is at the
perturbation frequency, f1, to the amplitude of the perturbation, R1. For the purpose
of small-signal modelling, it is assumed that the perturbation is much smaller than
the constant, that is, R1 � R0. Additionally, the following variables are defined:

• The up-slope of the ramp signal, c(t), is constant and is denoted as m0.
• The steady-state ON-time (when R1 = 0) is denoted as TON. It can be determined

from Fig. 2.16 that

TON = R0

m0
.

• The constant OFF-time is equal to TOFF. Denote 1/(TON + TOFF) by fc, which is
the steady-state carrier frequency of the modulator when the perturbation is not
present (R1 = 0).
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Fig. 2.16 Constant-OFF-time modulation. v1: PWM output when the reference is a constant; v2:
PWM output when the reference r(t) contains a sinusoidal perturbation

Using these notations, reference [14] developed the small-signal gain of the VF
constant-OFF-time modulator as follows

1

m0(TON + TOFF)
sin

sTOFF

j2

(
sin

s(TON + TOFF)

j2

)−1

e
sTON

2 , (2.32)

where j = √−1 is the imaginary unit. Compared to the constant-frequency modula-
tor gain developed in the previous subsection, this gain is much more complicated
and exhibits nonlinear characteristics that are frequency dependent.

Defining a function K1(s) as

K1(s) = TON + TOFF

TOFF

sin
sTOFF

j2

(
sin

s(TON + TOFF)

j2

)−1

, (2.33)

the modulator gain (2.33) can be written as

Γ1(s) = TOFF

m0(TON + TOFF)2
K1(s)e

sTON
2 . (2.34)

Note that Γ1(s) consists of three parts:

1. TOFF/[m0(TON + TOFF)
2], which is independent of the frequency and represents

the DC gain of the modulator. The DC gain can also be derived by taking the
derivative of the steady-state duty ratio with respect to the modulator input, R0
(note that TON = R0/m0):

d

dR0

(
TON

TON + TOFF

)
= d

dR0

(
R0/m0

R0/m0 + TOFF

)
= TOFF

m0(TON + TOFF)2
.

This can be compared with the gain of constant-frequency pulse-width modula-
tors, which, using the notations introduced here, can be written as [m0(TON +
TOFF)]−1.

2. The second part, represented by K1(s), is frequency-dependent but is always
real-valued, hence does not contribute to the phase response of the modulator
gain. Its magnitude is close to unity except at frequencies approaching half the
switching frequency.
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3. The third part in (2.34) does not contribute to the amplitude of the gain. It cor-
responds to a phase lead that increases linearly with the frequency as well as the
ON-time, TON.

The phase lead is the most interesting part of the VF PWM gain and represents an
advantage of the modulation method because it helps to increase the phase margin
of the control loop. The phase lead is most significant at high frequencies and/or
when TON is large. For example, at one tenth of the switching frequency, the phase
lead will be 14.4° for TON/(TON + TOFF) = 0.8. This may have significant impact
on loop design, especially when wide bandwidth is required.

The modulator gain for constant ON-time control can be obtained by exploiting
the duality between constant ON-time and constant OFF-time control. To this end,
assume that the same signal r(t) as shown in Fig. 2.16 is now used to modulate
the OFF-time while the ON-time is fixed at TON. Denoting the resulting constant
ON-time PWM waveform as p(t, TON) and the original constant OFF-time PWM
waveform as p(t, TOFF), one can see that p̄(t, TON) = 1 − p(t, TOFF) if TON under
constant ON-time PWM is equal to TOFF under constant OFF-time PWM. There-
fore, the small-signal gain of a constant ON-time VF modulator can be obtained by
exchanging TON and TOFF in (2.32) and multiplying the resulting expression by −1,
as given below:

−1

m0(TON + TOFF)
sin

sTON

j2

(
sin

s(TON + TOFF)

j2

)−1

e
sTOFF

2 . (2.35)

Like in the case of constant OFF-time PWM, we can define a function

K2(s) = TON + TOFF

TON

sin
sTON

j2

(
sin

s(TON + TOFF)

j2

)−1

, (2.36)

and rewrite (2.35) as follows:

Γ2(s) = −TON

ms(TON + TOFF)2
K2(s)e

sTOFF
2 . (2.37)

Similar to K1(s), K2(s) is approximately equal to unity except at high frequencies.
The phase of consists of two parts: a 180° phase reversal (due to the minus sign in
front of the expression) and a phase lead that is proportional to the OFF-time. Hence
it can be concluded that both constant OFF-time and constant ON-time VF PWM
creates a phase lead which is beneficial for control stability.

Note that the term

sin
s(TON + TOFF)

j2
(2.38)

appears as a denominator in both K1(s) and K2(s). This term becomes zero at fre-
quencies

s = j2kπ

TON + TOFF

, (2.39)
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that is, at multiples of the steady-state PWM frequency fc = 1/(TON + TOFF). This
is, however, not a practical problem since the use of the small-signal model, as
discussed in the previous section, should be limited to half the PWM frequency.

2.3.3 Interleaved PWM

When multiple PWM converters are connected in series or in parallel, it is advan-
tageous to operate all converters at the same frequency but with certain phase shift
among their PWM signals. The technique is referred to as interleaving and has been
widely used in power electronics. The benefit of interleaving can be understood by
an example shown in Fig. 2.17, where two identical buck converters operate in par-
allel with the same input and output voltage. Both converters operate with the same
carrier frequency and reference (hence also duty ratio), but the two carrier signals
are shifted from each other by half a carrier cycle. The resulting ripples (without the
DC component) of the two inductor currents are shown at the bottom of Fig. 2.17.
The output voltage is treated as a constant, and the two inductors are assumed iden-
tical. As can be seen, the combined current, iL, that charges the output capacitor
has much smaller ripple, and the ripple is cancelled completely when the duty ratio
is 0.5.

Similar effects can be observed in the input current, iin, of the two parallel buck
converters. The same technique can be applied to other DC–DC converters. In gen-
eral, with N identical converters operating in the parallel and their carrier signals
being phase-shifted from each other by one N th of a carrier cycle, the fundamental
frequency of the combined input or output current is Nfc, where fc is the carrier
frequency individual converters are switched at. This ripple cancellation effect can
be exploited to reduce input and output filtering requirements.

The effects of interleaving on current ripple can also be analysed in the frequency
domain by using the PWM spectral models developed in the previous section.

Consider again the parallel buck converters shown in Fig. 2.17. Response of each
of the inductor currents can be written as

L1
d

dt
iL1 = vins1(t) − v0,

L2
d

dt
iL2 = vins2(t) − v0,

where s1(t) and s2(t) are the switching functions of switch S1 and S2 as defined in
Fig. 2.17. Assuming L1 = L2 = L, we obtain the response of the combined current
iL as follows:

L
d

dt
iL = vin

[
s1(t) + s2(t)

] − 2v0. (2.40)

With constant input and output voltages, (2.40) indicates that the cancellation of har-
monics in current iL is due to the cancellation of harmonics in the PWM functions
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Fig. 2.17 Two buck
converters operate in parallel
and the resulting ripple
cancellation effect through
interleaving

s1(t) and s2(t). Consider the unipolar trailing-edge PWM spectral model (2.10),
which simplifies to

bpwm(t) = D +
+∞∑

m=1

2 sin(mDπ)

mπ
cos

[
m(ωct + θc) − mDπ

]

when the reference is constant (M = 0). Without losing generality, assume the initial
phase angle of the first carrier signal, c1(t), is zero, that is, θc1 = 0. The second
carrier signal, c2(t), is delayed from c1(t) by half a carrier cycle, hence θc2 = −π .
Therefore,

s1(t) = D +
+∞∑

m=1

2 sin(mDπ)

mπ
cos[mωct − mDπ], (2.41)
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Fig. 2.18 Two half-bridge
converters connected in
parallel through inductors on
the AC side

s2(t) = D +
+∞∑

m=1

2 sin(mDπ)

mπ
cos

[
mωct − m(D + 1)π

]
, (2.42)

which indicates that all odd-order harmonics of the carrier are eliminated in
s1(t) + s2(t); in other words, the lowest-order harmonic in the combined output
current is at twice the carrier frequency.

The frequency-domain analysis presented above can be generalised to any num-
ber of parallel converters as well as to other converter topologies. It is especially
effective for interleaved AC–DC and DC–AC converters where the varying ripple
pattern makes it difficult to study the ripple cancellation effects in the time domain.

As an example, consider the case when two of the half-bridge converter shown
in Fig. 2.13 are connected in parallel, as depicted in Fig. 2.18. The DC input termi-
nals are connected together directly. To prevent short circuit, an inductor has to be
inserted at the output of each converter before the two can be connected in paral-
lel. Assume each pair of switches are controlled by a bipolar double-edge modulator.
Further, assume the reference for both modulators is r(t) = R1 cos(2πf1t + θ1), and
the triangle carriers have the same frequency and amplitude, but are phase shifted
from each other by half a carrier cycle. Without losing generality, assume the initial
phase angle of both the reference and the first carrier is zero. Based on the analy-
ses presented in Sect. 2.2, the voltage produced by each half bridge relative to the
middle of the DC link is

v1(t) = vdc

2

[
M

2
cos(ω1t) +

+∞∑

m=1

2

mπ
J0

(
mπM

2

)
sin

mπ

2
cos(mωct)

+
+∞∑

m=1

±∞∑

n=±1

2

mπ
Jn

(
mπM

2

)
sin

(m + n)π

2
cos(mωct + nω1t)

]

,

(2.43)
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v2(t) = vdc

2

[
M

2
cos(ω1t) +

+∞∑

m=1

2

mπ
J0

(
mπM

2

)
sin

mπ

2
cos

[
m(ωct − π)

]

+
+∞∑

m=1

±∞∑

n=±1

2

mπ
Jn

(
mπM

2

)
sin

(m + n)π

2

× cos
[
m(ωct − π) + nω1t

]
]

. (2.44)

Similar to the case of two parallel buck DC–DC converters, harmonic cancella-
tion between iL1 and iL2 can be studied based on harmonic cancellation between
v1 and v2. By comparing the two expressions given above, it can be easily seen
that interleaving cancels all odd-order harmonics of the carrier and all their side-
band components. Further, since the amplitude of any even-order carrier harmonic
is zero, the only harmonics remained in v1(t) + v2(t) are the following odd-order
sideband components of even-order carrier harmonics:

4vdc

2

+∞∑

m=2,4,...

±∞∑

n=±1,±3,...

1

m
Jn

(
mπM

2

)
sin

(m + n)π

2
cos(mωct + nω1t). (2.45)

The above analysis can be extended to any number of parallel converters. The
same analysis and ripple cancellation principle also apply to converters connected
in series. In general, with N identical converters operating in either parallel or series,
and their carrier shifted from each other by one N th of a carrier cycle, all harmonics
except those at N -multiples of the carrier frequency and their sideband components
will be eliminated.

The interleaving method discussed so far confines the carrier phase shift to one
N th of a carrier cycle when N modules are connected. It has been recognised re-
cently [15] that this may not be optimal. For example, the frequency range in which
conducted electromagnetic interference (EMI) is measured by many EMI standards
is from 150 kHz to 30 MHz. EMI filter size is typically driven by the lowest car-
rier harmonic within this frequency range. With three converters in parallel and
each switching at 50 kHz, interleaving as discussed before would eliminate the first
and the second carrier harmonics as well as their sideband components, but leaves
the third carrier harmonic and its sideband components unaffected. Since the third
carrier harmonic in this case (150 kHz) is right at the starting frequency of EMI
measurement, interleaving doesn’t help to reduce the EMI filter size.

For the above example, it would be more advantageous to reduce the third car-
rier harmonic and its sideband components. There are other applications where it is
desirable to selectively reduce certain carrier harmonics and their sideband com-
ponents. This can be achieved by the newly developed asymmetric interleaving
method [1], in which the carrier phase shift is not confined to one N th of a car-
rier cycle and can vary from one pair of converters to another. To distinguish from
this new method, the interleaving method discussed before is called symmetric inter-
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Fig. 2.19 Interleaving of
four triangle carrier signals

leaving. Figure 2.19 illustrates the basic concept of asymmetric interleaving, which
is further divided into two subcategories:

1. Regular Asymmetric Interleaving: Like symmetric interleaving, the phase shifts
between adjacent converters are still equal in this case but they don’t add to one
carrier period. The carrier initial phase angle of the kth converter can be written
as

θck = (k − 1)Δθc + θc1, k = 1,2, . . . ,N, (2.46)

where Δθc is a constant,
2. Irregular Asymmetric Interleaving: The carrier phase shifts are not equal and

don’t necessarily add to one carrier period.

The harmonic cancellation effects of asymmetric interleaving among N paral-
lel or series converters can be characterised by using the harmonic scaling factor
defined below where is the initial phase angle of the kth converter [15]:

κm = 1

N

N∑

k=1

ejmθck . (2.47)

The scaling factor allows the combined harmonic spectrum of N parallel or series
converters to be determined from that of one converter by simply multiplying each
harmonic by Nκm. Note that κm applies to the mth carrier harmonic as well as
all of its sideband components. Under symmetric interleaving, it can be verified
that

κm =
{

1 if m = iN,

0 if m �= iN,
(2.48)



2 Pulse-Width Modulation 53

Table 2.2 Harmonic scaling
factors under regular
asymmetric interleaving for
the case of N = 4

m Δθc

18° 22.5° 30° 45° 75° 90° 110°

1 0.939 0.906 0.837 0.653 0.205 0 0.196

2 0.769 0.653 0.433 0.000 0.224 0 0.262

3 0.524 0.318 0.000 0.271 0.271 0 0.837

4 0.250 0.000 0.250 0.000 0.433 1 0.133

5 0.000 0.213 0.224 0.271 0.958 0 0.086

6 0.182 0.271 0.000 0.000 0.000 0 0.433

7 0.267 0.180 0.224 0.653 0.126 0 0.583

8 0.250 0.000 0.250 1.000 0.250 1 0.163

9 0.149 0.180 0.000 0.653 0.653 0 0.000

10 0.000 0.271 0.433 0.000 0.837 0 0.925

where i is any integer. In general, κm varies between 0 and 1, with 0 indicating
complete cancellation of the mth carrier harmonic and all of its sideband compo-
nents. Table 2.2 tabulates the value of κm under regular asymmetric interleaving
with different values of Δθc for the case of N = 4.

2.4 Peak Current Control

The principle of peak-current control is illustrated in Fig. 2.20. Compared to the
voltage-mode control depicted in Fig. 2.14, the inductor current is used here in place
of the carrier signal to generate the PWM signal. The method works as follows:
The switch is turned on by a clock signal at the beginning of each switching cycle.
The sensed inductor current is compared to the output of the voltage compensator,
denoted as ip in Fig. 2.20, and the switch is turned off when the two become equal.
For stability reasons, a compensation ramp with a slope equal to mc is usually added
to the sensed inductor current such that the inductor current is effectively compared
to the reference minus the compensation ramp.

Peak-current control offers several practical advantages over voltage-mode con-
trol for DC–DC converters and other applications. Since the peak of the induc-
tor current is directly controlled, it provides a built-in over-current protection for
the switch and other components. The use of the inductor current in the pulse-
width modulation process effectively introduces an inner feedback control loop that
changes the control characteristics and simplifies the design of the output voltage
feedback compensator. Additionally, the method is easy to implement since there
is no need for an external ramp (carrier) signal for PWM. For these reasons, most
power supplies used in practice are controlled by this method.

Peak-current control belongs to the general category of current-mode or current-
programmed control [8]. Other current-mode control methods include average cur-
rent control [7], nonlinear carrier control [11] and nonlinear average current con-
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Fig. 2.20 Principle of
peak-current control

trol [18]. These methods are particularly useful for rectifiers with active power fac-
tor correction (PFC). Modelling of peak-current control is included in this chapter
because of its direct involvement in the pulse-width modulation process.

2.4.1 Averaged Modelling and Duty Ratio Constraint

The state-space averaged model developed in the previous section is still valid under
peak-current control. However, to complete the model, a duty ratio constraint that re-
lates the duty ratio, d , to other variables used in the averaged model is needed. Such
a duty ratio constraint can be developed from the principle of the control method,
and there are several different models in the literature. Early work on this subject
developed the duty ratio constraint by assuming that the inductor current waveform
is in a steady state [10]. With reference to Fig. 2.20,2 the average of the inductor cur-
rent, 〈iL〉, can be related to other variables by the following equation if one assumes
that the inductor current returns to its initial value at the end of each switching cycle,
that is, when the current waveform has reached its steady state:

〈iL〉 = ip −
(

mc + m1

2

)
dTs. (2.49)

It was pointed out in [26] that using the steady-state current waveform is inconsistent
with the objective of developing a dynamic model. Indeed, the resulting averaged
model only predicts the DC and low-frequency behaviour of peak-current controlled
DC–DC converters [17]. The duty ratio constraint proposed in [26] doesn’t involve

2Note that all slopes defined in Fig. 2.20 (mc , m1 and m2) are positive variables.
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steady-state assumption and is given below:

〈iL〉 = ip − mcdTs + Ts

2

[
m1d

2 + m2(1 − d)2]. (2.50)

This results in improved accuracy of the averaged model in the high-frequency
region. However, neither model can predict the subharmonic (ripple, switching)
instability that is characteristic of peak-current control [8]. As a remedy for this
limitation, an additional second-order transfer function representing the so-called
sample-and-hold effects was proposed in [12] as part of the modulator gain, which
complicates the model and has been a source of confusion.

The subharmonic instability problem can be explained with reference to the cur-
rent waveform depicted in Fig. 2.20. Denote the value of the inductor current at the
beginning of the kth switching cycle as iL[k]. Without a compensation ramp, that is,
when mc = 0, the inductor current reaches the reference, ip , when the switch turns
off. Hence,

iL[k] = d[k]m1Ts + ip, (2.51)

from which the duty ratio, d[k], in the kth switching cycle can be found:

d[k] = ip − iL[k]
m1Ts

. (2.52)

To determine the value of the inductor current at the end of the kth switch cycle,
denoted as iL[k + 1], note that

iL[k + 1] = ip − (
1 − d[k])m2Ts. (2.53)

Substituting (2.52) into (2.53), we have

iL[k + 1] = −m2

m1
iL[k] +

(
1 + m2

m1

)
ip − m2Ts. (2.54)

This first-order sampled-data model indicates that the inductor current response is
unstable if

−m2

m1
(2.55)

lies outside the unit circle, that is, if

m2

m1
> 1. (2.56)

To relate this instability condition to usual operation parameters of a converter, note
that m1dTs = m2(1 − d)Ts holds when the inductor current is in steady-state such
that

m2

m1
= d

1 − d
, (2.57)

which indicates that a peak-current controlled converter is inherently unstable when
the duty ratio is larger than 50%.
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2.4.2 Ripple Reconstruction from Averaged Models

Duty ratio constraints that enable an averaged model to predict subharmonic insta-
bility under peak-current control are introduced here. The method is based on recon-
structing the ripple current of the inductor from the state-space averaged model and
using the estimated ripple to define the duty ratio. The ripple estimation method
is developed from a mathematical procedure called KBM (Krylov–Bogoliubov–
Mitropolsky) algorithm [4]. The KBM algorithm is reviewed in the following while
characteristics of the resulting averaged models will be presented in the next sub-
section.

Denote, for any of the second-order DC–DC converters shown in Fig. 2.15, the
instantaneous inductor current as iL(t) and its local average as 〈iL(t)〉. Under CCM
operation, the converter can be described by the following piece-wise linear model

d

dt
x = f (t, x,u) =

{
A0x + B0u, if t ∈ [0, dTs],
A1x + B1u, if t ∈ [dTs, Ts], (2.58)

where, as in the previous section, x is the vector of state variables, and u is the input
voltage. The state-space averaged model (2.24) can be written in a more general
form as

d

dt
〈x〉 = g

(〈x〉, u)
, (2.59)

where 〈x〉 represents the local average of x and

g
(〈x〉, u)

� 1

Ts

∫ t+Ts

t

f
(
t, 〈x〉, u)

dt

= [
dA0 + (1 − d)A1

]〈x〉 + [
dB0 + (1 − d)B1

]
u. (2.60)

The KBM algorithm places the averaging method in a geometric framework by
considering a change of variables [4]

x(t) = 〈
x(t)

〉 + Ψ1
(
t,

〈
x(t)

〉)
, (2.61)

where x(t) and 〈x(t)〉 are the solutions to (2.58) and (2.60), respectively, and
Ψ1(t, 〈x(t)〉) is the ripple correction term to be obtained using the following pro-
cedure:

1. Take the difference between (2.58) and (2.60) and compute its indefinite integral:

γ1(t, y) =
∫

f (t, y,u) − g(y,u)dt. (2.62)

2. Compute the time-average of γ1 over one switching cycle and remove it from γ1:

Ψ1(t, y) = γ1(t, y) − 1

Ts

∫ Ts

0
γ1(τ, y)dτ. (2.63)
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The estimated ripple function Ψ1 is piecewise linear because function f is piece-
wise linear, and is called the first-order ripple estimate. Generally, more accurate
estimations can be obtained by considering the following change of variables [4]

x(t) = 〈
x(t)

〉 + Ψ1
(
t,

〈
x(t)

〉) + Ψ2
(
t,

〈
x(t)

〉) + Ψ3
(
t,

〈
x(t)

〉) + · · · , (2.64)

where Ψi is called the ith-order ripple estimation which are ith-order polynomials
in t and can be determined sequentially using a procedure similar to that outlined
above.

The first-order (linear) ripple current functions for the three basic converter
topologies are given below, where vin is the input voltage, v0 is the average of the
output capacitor voltage, and Ts is the switching cycle:

îL(t) = vin

2L
(d − 1)(dTs − 2t), (2.65)

îL(t) = 〈v0〉
2L

(d − 1)(dTs − 2t), (2.66)

îL(t) = vin + 〈v0〉
2L

(d − 1)(dTs − 2t) (2.67)

for the buck, boost and buck–boost converters, respectively. These functions are
valid for the interval when the switch is ON, that is, t ∈ [0, dTs]. Similar expres-
sions can be obtained for the OFF-interval of the switch and for other converter
topologies.

2.4.3 Complete Averaged Models and Subharmonic Instability

As an example, consider again the boost DC–DC converter shown in Fig. 2.15b.
The state-space averaged model of the converter can be written as follows when a
resistive load is assumed:

d

dt

( 〈iL〉
〈v0〉

)
=

(
0 d−1

L
1−d
C

− 1
CR

)( 〈iL〉
〈v0〉

)
+

(
vin
L

0

)

. (2.68)

The instantaneous inductor current at the switch turn-off instant can be written as
〈iL〉 + îL(dTs) so that the following duty ratio constraint is obtained:

ip − mcdTs = 〈iL〉 + îL(dTs). (2.69)

Based on the first-order ripple current function (2.66), this can be more specifically
written as

ip − mcdTs = 〈iL〉 + dTs(1 − d)〈v0〉
2L

, (2.70)
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where the variables are as defined in Fig. 2.15b and Fig. 2.20. This combined
with (2.68) defines a complete averaged model for boost converter under peak-
current control.

The averaged model (2.68) and (2.70) can be used to study various characteris-
tics of the converter. Of particular interest is the ability of the model to predict the
subharmonic instability discussed in the previous subsection. Here we will examine
this at three different levels: (a) the modulator gain, (b) the current loop gain, and (c)
dynamics of the entire converter. In all cases, we will see that the averaged model
can correctly predict the subharmonic instability [19].

The nonlinear duty ratio constraint (2.70) can be linearised to define a small-
signal transfer function from the average inductor current to the duty ratio, as given
below:

D(s)

〈IL(s)〉 = 1

−[mc + (1/2 − D)(M1 + M2)]Ts

. (2.71)

This essentially defines the gain of the modulator from the inductor current to the
duty ratio under peak-current control. Symbols in capital letters in the above equa-
tion (as well as throughout the rest of the section) represent steady-state values of
the corresponding variables in lower cases. (For example, M1 represents the steady-
state value of m1.) As can be seen, when no slope compensation is included (i.e.
mc = 0), the small-signal modulator gain (2.71) becomes positive when the steady-
state duty ratio, D, exceeds 0.5. This corresponds to a current feedback control loop
with a positive gain, hence indicating unstable operation.

To find the complete current loop gain, we note that the average model of the
inductor current in a continuous conduction mode PWM converter can be written in
general as

d

dt
〈iL〉 = dm1 − (1 − d)m2.

Under the assumption that the converter input and output voltages are constant, the
duty ratio to the average inductor current transfer function can be obtained from this
model as

〈IL(s)〉
D(s)

= M1 + M2

s
. (2.72)

Combining this with (2.71) yields the current loop gain of a boost converter under
peak-current control:

Ic(s) = M1 + M2

−[mc + (1/2 − D)(M1 + M2)]Ts

1

s
. (2.73)

As can be seen, the loop gain is unstable for D > 0.5 when no slope compensation
is used. This prediction is consistent with the sampled-data analysis results [26].

To examine the stability of the overall boost converter under peak-current control,
note that the averaged model (2.68) is nonlinear but can be linearized around a given
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operation point to give the following linear model:

d

dt

(
〈̂iL〉
〈̂v0〉

)

=
(

0 D−1
L

1−D
C

− 1
CR

)(
〈̂iL〉
〈̂v0〉

)

+ Vin

1 − D

(
1
L

− 1
CR(1−D)

)

d̂. (2.74)

Meantime, linearisation of (2.70) gives the following small-signal duty-ratio con-
straint

d̂ = 1 − D

Vx

⎡

⎣
(

2L
Ts

D(D − 1)

)� (
〈̂iL〉
〈̂v0〉

)

+ 2L

Ts

îp

⎤

⎦ ,

where Vx = 2(D − 1)Lmc + (2D − 1)Vin. A complete small-signal model of the
converter is obtained by substituting the above expression into (2.74). The system
matrix of the combined small-signal model is found to be

A =
(

0 D−1
L

1−D
C

− 1
CR

)

+ Vin

Vx

(
2
Ts

D(D−1)
L

− 2L
RCTs(1−D)

D
CR

)

. (2.75)

Stability of the converter depends on the eigenvalues of A, that is, the roots of the
characteristic polynomial det(sI − A). In the case when no slope compensation is
used, A can be written as

A =
(

2
Ts

1
2D−1

D−1
L

3D−1
2D−1

1−D
C

− 2L
RCTs(1−D)(2D−1)

1
CR

1−D
2D−1

)

. (2.76)

Hence

det(sI − A) = s2 + s

1 − 2D

(
2

Ts

+ 1 − D

RC

)
+ a0. (2.77)

Note that the coefficient of s in (2.77) is negative when D > 0.5, in which case
at least one root of the characteristic polynomial will be positive because the sum
of the two roots is equal to the inverse of this coefficient. This confirms again the
ability of (2.70) as the duty-ratio constraint to predict subharmonic instability under
peak-current control.

2.5 Summary

Pulse-width modulation is the foundation of control in power electronics. Among
various modulation methods, constant-frequency PWM using a sawtooth or triangle
carrier is most common in practice. When the reference is a sine wave, the use of
a triangle carrier has an additional benefit that odd-order sideband components of
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odd-order carrier harmonics as well as even-order sideband components of even-
order carrier harmonics are eliminated. Closed-form spectral models developed us-
ing double Fourier analysis facilitated the analysis and comparison of these PWM
methods.

The pulse-width modulator is also an integral part of the feedback control loop
and needs to be properly modelled for control design. A constant-frequency mod-
ulator can be modelled by a constant gain, but such linear time-invariant model is
only valid up to half the carrier frequency. Beyond this frequency, the modulator
response to a perturbation in the reference may be affected by sideband components
of the perturbation (when the perturbation frequency is a multiple of one half of the
carrier frequency) and cannot be modelled by a constant gain. A variable-frequency
modulator can also be modelled by a DC gain with a leading phase. The DC gain
changes with the ON and OFF time, but the variation is small and can be ignored
in practice. The leading phase adds to the phase margin of the control loop and is
beneficial for control stability.

Multiple PWM converters can be connected in parallel or in series to form a mod-
ular design with scalable current or voltage capacities. In such modular systems, in-
terleaving offers an opportunity to reduce the combined input or output harmonics
through harmonic cancellation among different modules. The traditional symmetric
interleaving method eliminates all but N -multiples of the carrier harmonic for N

modules connected in parallel or in series. Additionally, the harmonic cancellation
effect is such that, when a carrier harmonic is eliminated, all of its sideband harmon-
ics are eliminated as well. Asymmetric interleaving makes it possible to selectively
reduce different carrier harmonics and their sideband components to achieve differ-
ent objectives, such as minimisation of EMI filter size.

Peak-current control is a special form of control in which there is no explicit
PWM process. The current ripple is effectively used as a carrier signal in an equiv-
alent PWM process. Averaged models can be used to study both steady-state and
dynamic characteristics, including ripple instability, of peak-current controlled con-
verters. A key step in the development of such averaged model is a duty ratio con-
straint that models the equivalent PWM process. Duty ratio constraints developed
based on ripple estimation using the KBM method are provided for commonly used
converters and are shown to correctly predict the ripple instability.
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